arch Meets hello-world
A Tutorial Introduction to The arch Revision Control System

visit the Hackerlab at www.regexps.com

by
Thomas Lord

Contents

. Introducing arch

. System Requirements

. arch Commandsin General

. Introducing Y ourself to arch

. Creating aNew Archive

. Starting a New Project

. Starting a New Source Tree

. Project Tree Inventories

. Inventory ldsfor Source

. Importing the First Revision

« Checking-in Changes

. Retrieving Earlier Revisions

. Shared and Public Archives

. Theupdate/commit Style of Cooperation

. Introducing Changesets

. Exploring Changesets

. Introducing replay -- An Alternative to update
. Selected Files Commit

. Elementary Branches -- Maintaining Private Changes
. Patch Logs and Project Tree History

. Development Branches -- The star-merge Style of Cooperation
. Symbolic Tags

. Cherrypicking Changes

. Multi-tree Projects and Configuration Management
. Revision Library Basics

. Advanced Revision Library Use

« Driving Process Automation with arch Hooks

. Speeding up arch by Caching Revisionsin Archives
. Thearch Changeset Format

. Customizing the inventory Naming Conventions

. The GNU General Public License

. Uh....aLittle Help Here?

. Indexes

Copyright (C) 2001, 2002, 2003 Thomas Lord

This manual is free software; you can redistribute it and/or
nodify it under the terns of the GNU General Public License as
publ i shed by the Free Software Foundation; either version 2 of
the License, or (at your option) any |later version.

This manual is distributed in the hope that it wll be useful, but
W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the GNU
General Public License (enclosed) for nore details.

You shoul d have received a copy of the GNU General Public

Li cense along with this program if not, wite to the Free
Sof tware Foundation, Inc., 59 Tenple Place, Suite 330, Boston,
MA 02111-1307 USA

The Hackerlab at r egexps. com

Introducing arch

up: arch Meets hello-world
next: System Requirements

ar ch isarevision control, source code management, and configuration management tool.

Thismanual isan ar ch tutorial: its purposeisto help you get started using ar ch for the first time, and
then learn some of the more advanced features of arch.

Who is this Manual For?

In order to use this manual, you should be familiar with the basic unix command linetools (such as| s ,
nv,andfind).

In addition, you should be familiar with the programs di f f and pat ch and the concept of a
pat chset .

It isvery helpful, but not strictly necessary if you have used or are at least familiar with other revision
control systems such as CVS.

Where's the Reference Manual?
ar ch islargely a self documenting program. The command:

%tla help

will provide you with a categorized list of all available commands, and for a given command f oo ,

%tla foo -H

will provide you with documentation for that command.
Another Source of Help -- the Mailing List

Archissufficiently different from older and competing systems that new users are often a bit disoriented

http://www.regexps.com/

for the first few days. Y ou may find it helpful to seek help onthe gnu- ar ch- user s mailing list
which you can find vialinks from:

http://ww. gnu. or g/ sof t war e/ gnu-arch

What is Revision Control?

A "revision control system" isalibrarian and coordination tool for trees of files and the changes made to
them. For example, atypical software project uses revision control to keep track of how the project's
source code evolves over time, to keep track of each change to that code (such as each bug fix or feature
addition), to share those changes among all the programmers working on the project and help them
remain in sync, and to combine changes made at different times and/or by different programmersinto a
single source tree.

A "source management tool" is one that helps you to manage large source trees even if they have many
more files that you can keep track of "by hand". For example, a source management tool can inventory
the source filesin atree, distinguish the source files from scratch files and and other files that maybe
stored there, and inform you when source files are added and del eted.

"Configuration Management" addresses the needs of projects which combine multiple, separately
maintained source trees into asingle tree. A configuration management tool helps you to easily construct
the combined project and to keep track of how development on the component parts is synchronized.

Why Use arch?
ar ch has anumber of advantages compared to competing systems. Among these are:

Workson Whole Treesar ch keepstrack of whole trees -- not just individual files. For example, if you
change many filesin atree, ar ch can record all of those changes as a group rather than file-by-file; if
you rename files or reorganize atree, ar ch can record those tree arrangements along with your changes
to file contents.

Changeset Oriented ar ch doesn't simply "snapshot" your project trees. Instead, ar ch associates each
revision with a particular changeset: a description of exactly what has changed. ar ch provides
changeset oriented commands to help you review changesets, merge trees by applying changesets,
examine the history of atree by asking what changesets have been applied to it, and so forth.

Fully Distributed ar ch doesn't rely on acentral repository . For example, there is no need to give
write access to a project's archive to all significant contributors, instead, each contributor can have their
own archive for their work. ar ch seamlessly operates across archive boundaries.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

System Requirements

up: arch Meets hello-world
next: arch Commandsin General
prev: Introducing arch

In order to use ar ch , there are some software tools that you must already have available.
Tools Used to Build arch

GNU Make You will need GNU Make in order to build ar ch .

Standard Posix Shell Tools The package framework (i.e., the configure and build process) assumes that
some standard Posix shell tools are available on your system:

awk find nkdi r sh e
cat fold printf tee xar gs
chnod grep pwd t est

dat e head rm t ouch

echo | s sed tsort

Note: On some systems, the program installed as/ bi n/ sh isnot a Posix shell (it may be a variant of
csh or avery buggy implementation of Posix sh). On such systems, you should use a different shell to
runconf i gur e, such as.

% /usr/|ocal /bin/bash ../configure --config-shell /usr/I|ocal/Dbin/
bash

The null Device Your system must have/ dev/ nul | . Information directed to/ dev/ nul | should
simply disappear from the universe. As a specia "Green Software" measure, we have made provisions
that will enable your computers to convert that discarded information into heat, which you may use to
supplement conventional heating systems.

Tools Used Internally by arch

The remaining tools are used internally by arch itself. They don't necessarily need to be on your PATH --
when you build ar ch from source, run the configure script:

http://www.regexps.com/

% ./configure --help

and

% ./configure --hel p-options

for information about how to point ar ch to the correct versions.

GNU Tar Youmust have GNU t ar . ar ch invokest ar internally to pack and unpack files that it
storesin archives. It isimportant that all versions of ar ch use acompatible version of t ar , for which
purpose GNU t ar was chosen.

GNU diff and GNU patch After much deliberation, |'ve decided to go ahead and rely on the GNU
versionsof di f f and pat ch . Specifically, you need aversion of di f f that can generate "unified
format" output (option - u) and aversion of pat ch that understands that format and that understands
- - posi x . (It would be trivia to use "context diffs* and, thus, standard di f f and pat ch , however,
unified diffs are much easier to read, and I'm hoping that picking specific implementations of these
critical sub-components will help contribute to the long-term stability of ar ch .)

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

arch Commands in General

up: arch Meets hello-world
next: Introducing Y oursdalf to arch
prev: System Requirements

Every command in ar ch isaccessed viathe programt | a , using an ordinary sub-command syntax:

% tla <sub-command> <opti ons> <par anet er s>

A list of sub-commands can be obtained from:

%tla help

A brief summary of the options to any command is given by:

% tla <sub-comuand> -h

A more detailed help message for each command is given by:

% tla <sub-conmand> -H

For example, try:

%tla nmy-id -H
print or change your id
usage: tla ny-id [options] [id]

-h, --help Di splay a hel p nessage and exit.
-H Di splay a verbose hel p nessage and exit.
-V, --version D splay a release identifier string
and exit.
-e, --errnane specify programnanme for errors

-u, --uid print only the UD portion of the ID

http://www.regexps.com/

generat i

string

Wth no argunent print your arch id.

Wth an argunent, record |ID STRING as your id
in ~/.arch-parans/=id

Your id is recorded in various archives and | og nessages
as you use arch. It nust consist entirely of printable
characters and fit on one line. By convention, it should
have the formof an enmil address, as in this exanple:

Jane Hacker <jane. hacker @nu. org>

The portion of an id string between < and > is called your
uid. arch sonetines uses your uid as a fragnment when

ng
uni que file names.
The option -u (--uid) causes only the uid part of your id

to be printed.

Thereisagreat deal of regularity among commands regarding option names and parameter syntax.
Hopefully, you'll pick this up as you learn the various commands.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Introducing Yourself to arch

up: arch Meets hello-world
next: Creating a New Archive
prev: arch Commands in General

Thefirst step to using arch isto set your id with acommand like:

%tla ny-id "Tom Lord <I ord@nf. net >"

Y our id should be your name, followed by your email address in angle brackets.
ar ch recordsyour id in various log messages that it creates.
Y ou can find out your id with:
%tla ny-id
Tom Lord <l ord@nf. net>
How it Works -- Your arch Id
After the command above, you will have some new filesin your home directory:

%|s ~/.arch-parans
=i d

% cat ~/.arch-parans/=id
Tom Lord <l ord@nf. net >

Caution: You usually should not edit filesin~/ . ar ch- par ans/ "by hand."

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/
http://www.regexps.com/

The Hackerlab at r egexps. com

Creating a New Archive

up: arch Meets hello-world
next: Starting a New Project
prev: Introducing Y ourself to arch

An archive is adedicated directory which ar ch usesto hold alibrary of your project trees and
changesets. This chapter shows you how to create a new archive.

Choose a Location

Y ou need to decide where to store your archive: where to create the directory that will contain the
archive.

Usage Advice: Itislikely that you'll eventually want to have more than one archive. Therefore, itisa
good ideato create adirectory of archives.

In the examples that follow, we'll be creating an archive as a subdirectory of ~/ { ar chi ves} , a
directory of archives.

Create a directory in which to store archives:

#
% nkdir ~/{archives}

Choose an Archive Name

Next, you need to choose a name for your archive. An archive name consists of an email address,
followed by two dashes (- -), followed by a suffix. By convention, the email address should be that of
the archive owner.

In the example, we'll use the name:
| ord@nf . net - - 2003- exanpl e
Usage Advice: If you use asingle archive for avery long timeit will eventually accumulate a very large

amount of data and thus start to become inconvenient to work with. Because ar ch seamlessly operates
across archive boundaries, there is no need to keep everything in just one archive. It'sagood ideato plan

http://www.regexps.com/

to divide up your archives by time and that suggests that you include a date in the archive name. In the
example above, the archiveislabeled 2003 : ayear later, we could createl or d@nf . net - - 2004-
exanpl e and continue the project in that new archive. The 2003 archive will still exist at that point --
we'll just stop adding new datato it.

Usage Advice: Y ou should plan on having multiple archives, and therefore choose archive names that
distinguish them. The suffix - exanpl e abovetells usthat this archive is being created just work
through the examples in this tutorial.

Create the Archive

To create anew archive, use the make- ar chi ve command, telling it the archive name and archive
location:

Create the new archive

#

% tla nmake-archive | ord@nf. net--2003-exanpl e \
~/ {ar chi ves}/ 2003- exanpl e

Make this Your Default Archive

To save yourself from having to type the archive name to every future command, declare that your new
archive is your default choice:

Choose a default archive
#
%tla nmy-default-archive | ord@nf. net--2003-exanpl e

Y our current default is reported by:

%tla my-default-archive
| ord@nf . net - - 2003- exanpl e

And you can cancel the default setting with:

%tla nmy-default-archive -d
user default archive renoved

(If you experiment with - d , be sure to re-establish your default archive so that you can continue to
follow the examples.)

How it Works -- New Archives
Let's examine what that command did.

First, t | a now knows about the new archive:

What archives does "tla' know about?
#
% tla archives
| ord@nf . net - - 2003- exanpl e
/ home/ | ord/ {archi ves}/ 2003- exanpl e

% tla whereis-archive | ord@nf. net--2003-exanpl e
/ honme/ | ord/ {archi ves}/ 2003- exanpl e

Where 1s that data stored?
#

%1ls ~/.arch-parans
=def aul t -archi ve =id =| ocati ons

% cat ~/.arch-parans/=default-archive
| ord@nf . net - - 2003- exanpl e

%ls ~/.arch-parans/ =l ocations
| ord@nf . net - - 2003- exanpl e

% cat ~/.arch-parans/ =l ocati ons/|ord@nf. net--2003-exanpl e
/ honme/ | ord/ {archi ves}/ 2003- exanpl e

Next, the archive directory has been created and contains afew files:

%ls ~/{archives}
2003- exanpl e

%ls -a ~/{archives}/2003-exanpl e
) .archi ve-versi on
=neta-info

% cat ~/{archives}/2003-exanpl e/. archi ve-version
Hackerl ab arch archive directory, format version 2.

%ls -a ~/{archives}/2003-exanpl e/ =net a-i nf o/
name

% cat ~/{archives}/2003- exanpl e/ =net a-i nf o/ nane
| ord@nf . net - - 2003- exanpl e

Caution: You usually should not edit filesin~/ . ar ch- par ans/ or filesin an archive "by hand."

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Starting a New Project

up: arch Meets hello-world
next: Starting a New Source Tree
prev: Creating a New Archive

This and later chapters will show you how to set up and manage a simple project with ar ch through the
specific example of ahello world program.

Choose a Project Category

Asafirst step, you must choose a general category to serve as a name for the project. In the examples,
we'll use the name:

hel | o-worl d

Choose a Project Branch
ar ch encourages you to divide up the work on a project into separate branches.

Roughly speaking, branches are a mechanism for splitting the work on a project into two or more,
largely independent efforts. Let's suppose, for example, that the hel | o- wor | d project has two needs:

1) A need to make regular releases of good ol' fashioned hel | o- wor | d , fixing simple bugs, porting
the program, and adding tiny features.

2) A need to begin work on a graphical user interface for hel | o- wor | d, which is expected to take
about ayear to complete.

We'd like those two efforts to proceed in parallel, but not get in each other's way. For example, we don't
want GUI code to appear in the regular releases until it isworking fairly well.

In such acase, we'll use branches: one for regular releases (the mainline branch) and another for GUI
features (the gui branch).

There are many other uses for branches, some of which will be described later in the manual. For now,
we just need one branch: a branch for the official latest sources of hel | o- wor | d , which wel'll call:

http://www.regexps.com/

hel | o-wor |l d--nmai nli ne
NNNNNNNNNNN NNNNNNNN

| branch nane
cat egory name

Notice that the category and branch names are separated by two dashes. In general, category and branch
names must: consist only of letters, numbers, and dashes; must begin with aletter; must not themselves
contain two dashes; and must not end with a dash.

Choose a Version Number

Finally, you must choose a version number for the version of hel | o- wor | d that you'll be working on,
and create that version in the archive.

Version numbersin ar ch are not the name of a particular "snapshot” or release of your project --
though they are related to that concept. Instead, version numbers are the name of a development line: a
sequence of changes that you make while creating a particular rel ease.

In this case, we'll use the name:

hel |l o-worl d--mainline--0.1
NNN

ver si on nunber

Notice that version numbers are always positive integers, separated by periods.
Preparing the Archive
Having chosen aname, it's timeto prepare the archive for use of that name:

%tla archive-setup hello-world--mainline--0.1

After that command, we can query the archive to see what we've done:

%tla categories
hel | o-worl d

%tla branches hell o-world
hel | o-worl d--mai nl i ne

%tla versions hell o-worl d--nmainline
hell o-worl d--mainline--0.1

Why is it Like This

People new to ar ch are sometimes startled at the rigidity of its archive namespace. Two most common
guestion is:

Why have categories, branches and versions? Why can't | just name my projectswith arbitrary
string? These questions are best answered by recalling that arevision control system isalibrarian. Part
of itsjob isto help people navigate and search through very large collections of projects and source
code. In order to make such searching practical, ar ch defines a catal oging system: categories, branches,
and versions. (See What is Revision Control?.)

Thisis somewhat analogous to the catal oging systems used in libraries for books, such as the Dewey
decimal classification system: it's ahierarchical categorization of everything in thelibrary. It's a uniform
way to describe where agiven item is stored, and it aids searching by suggesting the relationships
between various items. For example, abranch islikely most closely related to other branchesin the same
category. A version with a higher major version number most likely contains later work than one in the
same branch with alower mgor version number.

The analogy isn't perfect: book catal oging systems such as Dewey are based on an official list of
categories and subcategories, while ar ch , on the other hand, let's you choose your own category
names. Still, like Dewey, ar ch names are based on the idea of grouping related items together to make
them easier to search and navigate. And just as Dewey isintended to capture the most common patterns
of how people search through books, ar ch isintended to capture the most common patterns of how
people search through source archives.

How it Works -- Creating Categories, Branches, and Versions

What does the command ar chi ve-setup actually do? |t sconceptualy quitesimple: it
creates new directoriesin your archive:

% tla whereis-archive | ord@nf. net--2003-exanpl e
/ home/ | ord/ {ar chi ves}/ 2003- exanpl e

%cd "tla whereis-archive |ord@nf. net--2003-exanpl e

Categories are top level directories:

%Il s
=neta-info hel | o-worl d

Branches the next level:
%I|s hello-world
hel | o-worl d--mai nli ne
Versions the third:
% 1ls hello-world/ hell o-worl d--nminline
hel |l o-worl d--mainline--0.1
Versions are themselves directories:
%I|s hello-world/ hello-worl d--nainline/hell o-worl d--nainline--

0.1/
+revi sion-1ock +version-I|ock

Note: Thelock files (e.g. +r evi si on- | ock) are used internally by arch. When adding new data to
an archive, ar ch doesn't smply call nkdi r . Instead, it carefully modifies archivesto that they are
awaysin aconsistent state, regardless of what commands are issued concurrently, or whether or not a
command is killed in mid-execution.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Starting a New Source Tree

up: arch Meets hello-world
next: Project Tree Inventories
prev: Starting a New Project

After following the examplesin earlier chapters, you should have anew archive and new hel | o-
wor | d project within that archive.

In this chapter, we'll walk through the steps of preparing a source tree to be part of that project.

The Intial Source

For the sake of example, let's assume that we have an initial, slightly buggy, implementation of hel | o-
wor | d:

% cd ~/wd

%Il s
hel | o-worl d

% cd hell o-world

%Il s
hw. ¢ mai n. c

% cat hw. c

#i ncl ude <stdi o. h>

voi d
hell o world (void)
{
(void)printf ("hello warld");
}

% cat nmain.c

extern void hello world (void);

http://www.regexps.com/

I nt
main (int argc, char * argv[])

{

hello_world ();
return O;

}
Initializing a Project Tree
Thefirst step of preparing source isto turn the ordinary source tree into a project tree:

% cd ~/wd/ hell o-worl d
%tla init-tree hello-world--mainline--0.1

%ls
hw. c mai n.c {arch}

Note that we passedi ni t - t r ee the name of the version in the archive that we'll be working on.
I ni t-tree created anew subdirectory in theroot of thetree ({ ar ch}).

The{ ar ch} subdirectory indicates that thisisthe root of a project tree:

% tla tree-root
[usr/ | ord/wd/ hell o-worl d

t | a knows what archive version thistreeisfor:

%tla tree-version
| ord@nf . net - - 2003- exanpl e/ hel | o-worl d--mai nline--0.1

Finally, ar ch has created something called a patch log for the version passedtoi nit-tree :

%tla log-versions
| ord@nf . net - - 2003- exanpl e/ hel |l o-worl d--mai nline--0.1

WEe'l explain what patch logs are for in later chapters.

Initializing a Tree Does Not Change an Archive

So far, we've only marked the project tree as source: we haven't yet stored anything new in the archive.
WE'I get there, but before we do that, there's an important topic to cover first: source inventories. Well
cover that in the next chapter.

What if You Make a Mistake With init-tree?
Suppose that in the example above, we had mis-typed:
%tlainit-tree hello-world--mainlin--0.1
One "brute force" solution isjust to deletethe { ar ch} subdirectory and start over. Later on, though,

that solution is undesirable: the { ar ch} subdirectory may contain some data you don't want to delete.
So, we'll take this opportunity to introduce a few more advanced commands.

There are two problems after the bogus call toi ni t -t r ee . The output from both of these commands
Is not what we want:

%tla tree-version
| ord@nf . net - - 2003- exanpl e/ hel l o-worl d--mainlin--0.1

%tla log-versions
| ord@nf . net - - 2003- exanpl e/ hel l o-worl d--mainlin--0.1

We can changethet r ee- ver si on of atree a any time:

%tla set-tree-version hello-world--mainline--0.1

%tla tree-version
| ord@nf . net - - 2003- exanpl e/ hel | o-worl d--nmai nline--0.1

Patch logs are alittle trickier. We have to delete the logs we don't want, and add those that we do want:

% tla add-|og-version hello-world--mainline--0.1

%tla |log-versions
| ord@nf . net--2003-exanpl e/ hell o-world--mainlin--0.1
| ord@nf . net - - 2003- exanpl e/ hel | o-worl d--mai nline--0.1

%tla renove-|og-version hello-world--mainlin--0.1

%tla | og-versions
| ord@nf . net - - 2003- exanpl e/ hel | o-worl d--mai nline--0.1

WARNING: r enove- | 0g- ver si on isadangerous command: it will remove patch logs that you
might need if you ask it to. You should only user enove- | og- ver si on when you are certain, aswe
were above, that what is being removed is one you do not want.

How it Works -- Initializing a New Tree
I ni t-tree created the{ ar ch} subdirectory at the root of the source tree. What's in there?

%ls {arch}
++def aul t-versi on =t aggi ng- net hod hel | o-wor | d

% cat {arch}/++defaul t-version
| ord@nf . net - - 2003- exanpl e/ hel o-worl d--mai nline--0.1

% cat {arch}/=taggi ng-net hod
[... long output ...]

{arch}/ hel | o-wor | distheroot of afairly deep tree. Patch logs are stored within that tree.

{arch}/ =t aggi ng- net hod isaconfiguration file that you can use to customize the naming
conventions that apply to thistree. It isexplained in alater chapter (see Customizing the inventory
Naming Conventions).

Note: You should not, of course, edit the contents of the { ar ch} directory by hand.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Project Tree Inventories

up: arch Meets hello-world
next: Inventory Idsfor Source
prev: Starting a New Source Tree

Caution: Steep L earning Curve: The concepts and commands introduced in this chapter are likely to
be unfamiliar to you, even if you have used other revision control systems. They'rereally quite simple
once you get over theinitial learning hurdle -- and after that they're very useful.

The Name-based inventory Concept

In aproject tree, some of the files and directories are "part of the source" -- they are of interest toar ch .
Other files and directories may be scratch files, editor back-up files, and temporary or intermediate files
generated by programs. Those other files should be ignored or treated specially by most ar ch
commands.

This chapter discusses how ar ch recognizes which filesto pay attention to, and which to ignore.

. The Name-based inventory Concept

. Theinventory Command

. Thearch Naming Conventions

. Naming Conventions Illustrated

« Customizing the Naming Conventions

. Why islt Like This-- inventory Naming Conventions

The inventory Command

up: Project Tree Inventories
next: The arch Naming Conventions
prev: The Name-based inventory Concept

Thecommandt| a i nventory --nanmes --sourceisusedto print alist of sourcefilesas
determined by the naming conventions. It has many options, including options to print other kinds of file

http://www.regexps.com/

lists (such as alist of al editor backup files, or alist of al files which are not source).
L et's suppose that after some editing, our source tree looks like this:

%ls
hw. c hw. c. ~1~ mai n. c {ar ch}

Thefilehw. c. ~1~ isan editor backup file. t I a knows that and omits that file from the source
inventory:
%tla inventory --nanes --source

./ hw. c
./main.c

t | a can give you other lists besides lists of source:

%tla inventory --nanes --backups
./ hw. c. ~1~

The arch Naming Conventions

up: Project Tree Inventories
next: Naming Conventions Illustrated
prev: The inventory Command

This section describes the default naming conventions used by ar ch to pick out source files from other
kinds of files. A later chapter describes how to customize these conventions for a partiuclar tree (see

Customizing the inventory Naming Conventions).

The naming conventions are based on several categories of files:

and .. These are sinply ignored by arch

excl uded Excluded files are nornally omtted

froma listing, but if the --all’

flag is passed to inventory',
then these files are put into
one of the categories bel ow and
included in the listing.

source These are apparent source files

preci ous These are non-source files that
shoul d not be automatically del eted

j unk These are non-source files that
may be automatically del eted

backups These are non-source files that
may be automatically del eted, but
any programthat del etes them shoul d
treat them as editor backup files
(e.g., keep the ol dest and newest

of them
unr ecogni zed These are files that arch doesn't
know how to classify -- they fit

none of the nam ng conventions or
t hat have nanes that appear to
be "suspicious".

The algorithm for classifying files by name has severa rules. For each file name, each of theserulesis
checked in the order listed here until the first rule is reached that classifies the file.

Exclude Dot Files The specia files. and. . are aways excluded from inventory listings.

Non-portable Names ar e Unr ecognized File names containing whitespace, non-printing characters, or
a"globbing character” are always classified asunr ecogni zed . The globbing characters are:

2101 *\

Excluded File Test If the- - al | flagisnot giventoi nvent ory , the file names matching the pattern
for excluded files are dropped from the listing. If the name of a directory is excluded, the entire contents
of that directory are skipped. By default, the pattern for excluded files matches control files created by

ar ch itsdf:

N(.arch-ids|\{arch\})$

Junk File Test All file names reaching this step that begin with two commas (, ,) are classified as

j unk . Temporary files created by ar ch itself begin with two commas. In addition, any file name
matching the junk pattern are classified by j unk . By default, that pattern matches any name beginning
with (at least) one comma:

/\’ . * $
Incidentally, that default pattern givesrise to a handy trick. If you need to create ascratch fileina
source tree, give it a name that begins with a single comma.

Backup File Test By default, abackup fileis any file that reaches this step and matches one of the
patterns:

ANF(~\V.~[0-9]+~) $
Aox\ bak|\.orig|\.rej|\.original|\.nodified|\.reject)$

Precious File Test By default, a preciousfile is any that reaches this step and matches one of the
patterns.

/\\ +. *$

A(\.gdbinit|\.#ckpts-1ock)$
A(=build\.*|=install\.*)$

A(CVS| CVS\ . adm RCS| RCSLOF SCCS| TAGS) $

Suspicious File Test (Unrecognized) Some file names reaching this step are explicitly treated as
unr ecogni zed on the presumption that they should probably not be present in a source tree. By
default, names ending with any of these extensions are treated asunr ecogni zed :

.0
.a
. SO
. core

In addition, the filename cor e is (by default) treated asunr ecogni zed).

Sour ce File Test Filesreaching this step are compared to the pattern for source files. The default pattern
Is shown below. Y ou should note that this pattern overlaps that for excl uded files given above. If the
--al | flagisgiventoinventory, the excl uded patternisn't used, and files that would match it
instead "fall through" to later steps of this algorithm.

N[_=a-zA-Z0-9].*|\.arch-ids|\{arch\}|\.arch-project-tree)$

In other words, by default, the ar ch control files and directories are source (if not excluded). Files
beginning with letters, numbers, underscore, or an equal sign are source.

Unrecognized Files Any left-over file name reaching this step istreated asunr ecogni zed .

Naming Conventions Illustrated

up: Project Tree Inventories
next: Customizing the Naming Conventions
prev: The arch Naming Conventions

Using our example, we can illustrate some of the naming conventions.
Recall that our project tree looks like this:

%ls
hw. c hw. c. ~1~ mai n. c {ar ch}

So the ordinary source listing is:

%tla inventory --nanes --source
./ hw. c
./ main.c

And all of the source files (none excluded from thelist) is:

%tla inventory --nanes --source --all

. hw. c

./main.c

./ {arch}/.arch-project-tree
./ {arch}/ =t aggi ng- net hod

We can include directoriesin this listing:

%tla inventory --nanes --source --all --both
. hw. c

./main.c

./ {arch}

./ {arch}/.arch-project-tree

./ {arch}/ =t aggi ng- net hod

./ {arch}/hello-world

./ {arch}/hell o-worl d/ hel |l o-worl d--nmainline
[... output trinmmed ...]

We can also look at some lists of non-source files:
%tla inventory --nanes --backups

./ hw.c. ~1~

Thei nvent or y command has many options that you may wish to explore.

Customizing the Naming Conventions

up: Project Tree Inventories
next: Why islt Like This -- inventory Naming Conventions
prev: Naming Conventions Illustrated

Y ou can alter the patternsused by i nvent or y to classify files. Thisisexplained in alater chapter (see
Customizing the inventory Naming Conventions).

Why is It Like This -- inventory Naming Conventions

up: Project Tree Inventories
prev: Customizing the Naming Conventions

Many systems provide naming conventions for recognizing source files but users new to ar ch often
wonder why ar ch needs so many categories of files. Recall that ar ch has the categories:

excl uded
source

preci ous

j unk

backups
unrecogni zed

A rationale for each category is explained here:

excluded is provided simply to keep inventory listings brief in the very common case that ar ch control
files are of no particular interest. Thisis similar to the treatment of "dot files' by | s andthe- - al | flag
toi nvent ory issimilartothe-aflagtol s .

sourceis provides simply so that ar ch can reliably distinguish those files from others. For example,
when comparing two source trees, ar ch compares only the filesin the category sour ce .

preciousfiles are those that ar ch should make an effort to preserve. For example, if ar ch needsto
make a copy of a project tree for you, it copiesthe pr eci ous filesalong with the sour ce . Suppose,
for example, that you are taking notes while working on source. Y ou don't want your file of notesto be
mistaken for source, but you also don't want them to be lost. A useful trick isto givethefile a

pr eci ous name (e.g. +not es).

junk Often when working on a project tree, it's convenient to create "throw-away" files. Y ou might want
to compile a quick test program or save, for the moment, the output of some command. When enough of
these throw-away files have accumulated, it's handy to be able to get rid of them all-at-once, without
having to carefully identify which files to toss, and which to keep.] unk names are perfect for this.
When you create one of these throw-away files, give it namelike, f 0o . Later, you can feel confident
and safe issuing commands like:

%rm,*

%find . -nane ',*" | xargs rm

%tla inventory --junk | xargs rm

From arch's perspective, junk files have two important properties. First, when copying atree, the junk
files are not copied. Second, it is considered safe for arch to overwrite ajunk file. In practice, arch will
only ever actually overwrite ajunk fileif that junk file has a name that beginswith, , .

backups Editor backup files and the backup files created by programs like pat ch often deserve special
treatment. For example, if your editor creates "numbered backups', those are almost junk files, but
rather than deleting all of them, you might want to delete only some of them.

For arch, what isimportant is that when copying atree, backup files should not also be copied. For
users, what is hopefully most useful is that using the trick:

%tla inventory --junk | xargs rm

will not delete backup files.

unrecognized The appearance in a source tree of afile that doesn't fit any known pattern (or that has a
suspicious name) most likely indicates that something has gone wrong. Rather than silently ignoring
such files or treating them as pr eci ous orj unk , ar ch explicitly flags these exceptions in order to
be able to give warnings to users.

Overal, adopting file naming conventionsis a discipline that many programmers may not be
accustomed to, but it's one | strongly recommend. It's easy to stick to these conventions and tools like
i nventory andtree-|int (introduced later) help you to keep your source from get out of control.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Inventory Ids for Source

up: arch Meets hello-world
next: Importing the First Revision
prev: Project Tree Inventories

Caution: Steep L earning Curve: Asin the previous chapter, the concepts and commands introduced
here are likely to be unfamiliar to you, even if you have used other revision control systems. Once you
"get it", though, thiswill seem quite natural. Best of all, thisisthe last tricky step before we can start
storing project treesin an archive.

Looks Like Source vs Really is Source

In the previous chapter, we saw how to find out which files look like source according to the naming
conventions:

%tla inventory --nanes --source
hw. ¢
mai n. c

In this chapter, there's a new distincition: files which look like source according to their names, vs. files
which really are source.

When you save your project tree in an archive, arch will store the files that really are source and ignore
the rest. We can ask which filesreally are source by dropping the - - nanes optiontoi nvent ory :

%tla inventory --source
[no out put]

It's alittle more interesting if we include arch's own "system files and directories' in the listing:

%tla inventory --source --all --both
{ar ch}

{arch}/.arch-project-tree

{ar ch}/ =t aggi ng- net hod

{arch}/hell o-worl d

[....]

http://www.regexps.com/

but the thing to note hereisthat hw. ¢ and mai n. ¢ aren't listed. Arch thinks they are source in name
only. The next section gives arecipe to fix that, and the sections after that explain what's really going on.

The add Command

We can tell arch that our files really are source, and should really be archived with the project, using the
tl a add command:

% tla add hw. c
%tla add main.c

And now we get a better answer from:

%tla inventory --source
hw. c
mai n. c

A related commandist| a del ete:

% tla delete hw.c

That doesn't delete the file hw. ¢ itsalf:

%1s
hw. ¢ hw. c. ~1~ mai n. c {arch}

but it does remove it from the officid list of source:

%tla inventory --source
mai n. c

For the sake of the examples, we need to put hw. ¢ back in thelist:

% tla add hw. c

%tla inventory --source
hw. ¢
mai n. c

Let'stake adeeper look at what's goingonwhenyout | a add files:
Two Names for Every File

Inthear ch world, every source file (and directory) in your project tree has two names: afile path and a
inventory id .

Thefile path of afileisthe relative path to the file from the root of the project tree. It describes where
within asourcetree afileislocated.

Theinventory id of afileisa(mostly) arbitrary string that is unique to the file within the tree. The
inventory id remains constant even if afileisrenamed. So while the file path says where afileis
located, the inventory id says which file it isthat's stored at that path.

Thepurposeof t | a add isto assign an inventory id to afile.

In our example, we can examine the ids:

%tla inventory --source --ids

hw. ¢ Xx_very long string

mai n.c X_another _very long string
NNN\N NNNNNNNNNNNNNNNNNNNNNNNNNN

| i nventory ids
file paths

Ordinarily, when afileis moved, itsfile path changes, but its inventory id should remain the same. The
t I a nove command helpswith this. Suppose that we:

% mv hw.c hello.c

we should follow that with:

%tla nove hw.c hello.c

after which:
%tla inventory --source --ids
hell o.c X_very long_string
mai n. ¢ X_anot her _very long_string

Notethat hel | 0. ¢ hasthe same inventory id that hw. ¢ used to.

WEe'll come back to the topic of renames later so, for now, let's put things back where they started:
% mv hello.c hw. c
%tla nove hello.c hw c

Quick Aside -- Adding Directories

Thet | a add command appliesto directories, too. If we were to create a new subdirectory in the tree,
weshouldt | a add it:

% nkdi r docs

%tla inventory --nanes --source --both
docs

hw. c

hel |l 0. c

but

%tla inventory --source --both
hw. c
hel l 0. c

unless

% tla add docs

and then

%tla inventory --source --both
docs

hw. ¢

hell o.c

But again, for the sake of our example, we don't need docs. We can just:

%rm-rf docs

Thereisntaneedtot | a del et e adirectory that we physically remove.

How it Works -- tla add

Whatt | a add doesisfairly smple. Note that when we added hw. ¢ and mai n. ¢ , anew directory
was created:

%ls -a
.arch-ids hw. c. ~1~ {arch}
hw. ¢ mai n. c
The. ar ch-i ds directory isnew:
%ls .arch-ids
hw. c.id main.c.id

% cat .arch-ids/hw.c.id
very long string

The*. i d filesiswhere the raw data that determines afileid are stored. Thecommandt | a del et e
removes those files. Thecommandt | a nopve renames them.

Theid for adirectory is stored dlightly differently. For example, when we created adocs subdir and
gaveitanidwitht| a add , that created afiledocs/ . arch-ids/=id.

Keeping Things Neat and Tidy
The command:

%tla tree-1lint

Is useful for keeping things neat and tidy.

tree-1int will tell you of any idsfor which the corresponding file does not exist. It will tell you of
any filesthat pass the naming conventions, but for which no explicit id exists.

It will also warn you about files that don't fit the naming conventions.

Inventory Ids -- There's More Than One Way to Do It
In this chapter, you've learned about the basic commands add , nove ,and del et e .

The use of those tools for managing inventory ids was chosen as the default behavior because,
superficially at least, it resembles similar commands in systems such as CVS which many users are
already familiar with.

There are other ways to manage inventory ids. Sometimes the other ways are more convenient. A later
chapter discusses these other techniques (see: xref : 1),

Why is it Like This -- The Purpose of Inventory Ids

Asyou'll seein later chapters, ar ch isgood at managing changes made to source trees and the files
they contain, and good at telling you about the history of trees and files.

As an example, let's suppose that Alice and Bob are both working onthehel | o_wor | d project. In her
tree, Alice makes some changesto hw. ¢ . Inhistree, Bob renameshw. c tohel | 0. c .

At some point it is necessary to "sync-up" Alice and Bob. Bob should wind up with the changes Alice
has been making. Alice should wind up with the same file renaming that Bob has done.

ar ch provides many mechanisms for that syncing up -- it's one of the most important thingsthat ar ch
can do -- but nearly all of them boil down to computing and applying changesets.

Alice can ask ar ch to create a changeset describing the work she's done, and that changeset will
describe the changes she made within hw. ¢ . Bob can create a changeset and that changeset will
describe the file renaming he did.

If Alice applies Bob's changeset to her tree, her copy of hw. ¢ should berenamed hel | 0. ¢ . Buta
trickier case isthis: What happensif Bob applies Alice's changeset to his tree?

Alice changed afilenamed . / hw. ¢ , but in Bob's tree, those same changes should be made to afile
named . / hel | o. ¢ . Fortunately, both files have the same inventory id:

file path I nventory id

Alice's tree:
./ hw. c X_very long_string
\
- the sane |ong
string
Bob' s tree: /
./Ihello.c X_very long_string

In Alice's changeset, the changes Alice made are described as being made to the filewhoseid is
x_very long_string.

Therefore, when applying that changeset to Bob's tree, ar ch knows to apply the changes to the file with
that same id; it knows to apply the changesto his. / hel | 0. c .

That example illustrates what inventory ids are for: they allow ar ch to describe the changes made to a
tree in terms of the logical identity of files rather than their physical location. There are many more
complicated examples of how inventory ids come into play, but now you've seen at least the basic point.

Why is it Like This -- Why tla move Doesn't Move Files

Why doesn'tt | a del et e delete the file being removed from the source category, ort | a nove
renameit?

Those commands work as they do so that you can adjust the ids in atree even if some other tool which
knows nothing about arch has rearranged files. For example, if you use a "directory editor" to rename

sourcefiles, t | a nove isavailable to catch-up to the changes the directory editor made.

Sometimes, arch users request the addition of commands:. tla nv ,tla nkdir ,tla rndir ,and
t | a r mthat would modify both ids and the corresponding source files. That's agreat idea and it's not
all that hard: so, if you're looking for something to do, that's a good idea for areal-world programming
project on which to try-out and learn arch. Let us know on the gnu- ar ch- user s mailing list if you
do this, so that we can consider merging your changes into the distribution.

L ate Note: One user recently contributed at | a mv command which aims to be an inventory-id-aware
replacement for mv(1) .

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Importing the First Revision

up: arch Meets hello-world
next: Checking-in Changes
prev: Inventory Idsfor Source

Just to Review: If you've been following the examples in the earlier chapters, we now have:

Your arch User 1D In Introducing Y ourself to arch, you set an ID string that ar ch usesto identify you.

Your First ArchiveIn Creating a New Archive, you created your first archive and made that your
default archive. In Starting a New Project you added the hel | o- wor | d project to that archive.

Your Initial Source TreeIn Starting a New Source Tree you began to initialize the sources for hel | o-
wor | d asan ar ch project tree and in Inventory |ds for Source you assigned inventory ids to the source
filesin that project.

Now it'sfinally timeto import the sourcesfor hel | o- wor | d into your archive. That will happenin
two steps. (1) create alog message; (2) import the sources.

Making the First Log File

Y ou're about to create anew revision of hel | o- wor | d in your archive: arecord of how that project
looked at a particular point in time.

Whenever you create a new revision, thefirst step isto create alog file for that revision:

% cd ~/wd/ hell o-worl d

% tla make-1og
++| 0og. hel l o-worl d--mai nline--0.1--1 ord@nf. net--2003-exanpl e

The output from that command is the name of a file which you must now edit. Initially it contains:

Sunmary:

http://www.regexps.com/

Keywor ds:

Y ou should fill out thisfile just like an email message. Add a short description of the revision in the
Summar y: field, and afull description in the body. Just asin email, the body must be separated from
the headers by a blank line. When you're done, the log might look like this:

Summary: initial inport
Keywor ds:

This is the initial inmport of "hello-world , the killer app
that will propel our new .com conpany to a successful |PQO

Usage Note for vi Fans. The default filename of log messages starts with the character + . vi isanon-
standard program in the sense that it treats arguments starting with + as options rather than ordinary
arguments. Therefore, you should be sure to type the filename for vi starting with . / , asin:

%vi ./++l og. hello-world--mainline--0.1--1ord@nf. net--2003-
exanpl e

or you could simply:

%vi "tla nake-log

Shortcut Note: This section describes the "long way" to make the log entry to go with your initial
import. There is a short-cut that can let you skip this step: the- L and - s optionstot| a i nport .
We've walked though the long way here but later you might wanttotrytl a i nport - Htolearn
about the shortcut'.

Storing the First Revision in the Archive
Finally, we can ask ar ch to add our source to the archive:

%tla inport
[....]

Note: If you have received an error along the lines of These apparent source files lack inventory ids,
please reread Inventory Ids for Source and either add each file or change the id-tagging-method to

names.

We can observe the side effects of that command in afew ways.
For one thing, we can ask ar ch what revisions exist in the archive for our project:

%tla revisions hello-world--mainline--0.1
base-0

In fact, we can get more detail:

%tla revisions --sunmary --creator --date \
hel | o-worl d--mainline--0.1
base-0
2003-01- 28 00: 45: 50 GvIr
Tom (testing) Lord <lord@nf. net>
initial inport

What's changed in the project tree? Recall that we have something called apatch log :

%tla log-versions
| ord@nf . net - - 2003- exanpl e/ hel | o-worl d--mai nline--0.1

Now it has an entry:

%tla |logs hello-world--mainline--0.1
base-0

%tlalogs --summary --creator --date \
hel | o-wor | d--mainline--0.1
base-0
2003- 01-28 00: 45: 50 GvIr
Tom (testing) Lord <lord@nf. net>
initial inport

%tla cat-l1og hello-worl d--mainline--0.1--base-0
Revi si on: hello-world--nmainline--0.1--base-0

Archive: lord@nf. net--2003-exanpl e
Creator: Tom (testing) Lord <lord@nf.net>
Date: Mon Jan 27 16:45:50 PST 2003
St andar d- dat e: 2003-01-28 00: 45: 50 GVl
Summary: initial inport
Keywor ds:
New-files: ./hw.c ./main.c
New pat ches: \
| ord@nf . net - - 2003- exanpl e/ hel | o-wor | d- - mai nl i ne--0. 1- - base-

This is the initial inport of "hello-world' , the killer app
that will propel our new .com conpany to a successful |PQ

Revision Names from import

| mport created anew revision in the archive. Note that the revision it created is called base- 0 and
that we can form alonger name for that revision by prepending the category, branch, and version:

hel | o-worl d--mai nli ne--0. 1--base-0

NNNNNNNNNNN NNNNNNNN NN\N NNNNNN

| | patch | evel nane

|
|
|
| | ver si on nunber
|
|
|

branch nane

cat egory nane

If we add in the archive name, we get something called a fully qualified revision name , whichisa
globally unique identifier for the revision:

| ord@nf . net - - 2003- exanpl e/ hel | o-wor | d--mai nli ne--0. 1--base-0

NNNNNNNNNNNNNNNNNNNNNNNNNN

archi ve nane

Fully qualified names will be of increasing importance as you learn about distributed repositoriesin later

chapters.

How it Works -- What import Does

Let'slook at what i mpor t did to the archive:

cd to the directory for the version we are worKking
on:

#

% cd ~/{archives}

% cd 2003- exanpl e/

% cd hel |l o-worl d/

% cd hell o-worl d--mai nline/

% cd hell o-worl d--mainline--0.1/
%ls

base-0

It created anew base- O directory for the revision.

% cd base-0
%ls
+r evi si on-1 ock

hel | o-worl d--nmainline--0.1--base-0.src.tar. gz
| og

Asaways, the +r evi si on- | ock fileissomething ar ch usesinternally to keep the archivein a
consistent state under all circumstances.

Thel og fileisacopy of the log message you wrote, with some additional headers added:

% cat | og

Revi sion: hell o-worl d--mainline--0.1--base-0
Archive: lord@nf. net--2003-exanple

Creator: Tom (testing) Lord <lord@nf.net>
Date: Mon Jan 27 16:45:50 PST 2003

St andar d- date: 2003-01-28 00:45:50 GMr
Summary: initial inport

Keywor ds:

New-files: ./hw.c ./main.c

New- pat ches: \

| ord@nf . net - - 2003- exanpl e/ hel | o-wor | d- - mai nl i ne--0. 1- - base-

This is the initial inport of "hello-world' , the killer app
that will propel our new .com conpany to a successful |PQ

Finally, the compressed tar file is a copy of the source filesin your project tree:

%tar ztf hello-world--mainline--0.1--base-0.src.tar.gz

hel | o-wor | d--nmai nli ne--0. 1--base- 0/

hel | o-wor |l d--nmai nline--0.1--base-0/hw.c

hel | o-wor | d--nmai nline--0. 1--base-0/nain.c

hel | o-wor |l d--nmai nline--0. 1--base-0/{arch}/

hel | o-wor |l d--nmai nline--0.1--base-0/{arch}/.arch-project-tree
hel | o-wor | d--nmai nline--0. 1--base-0/ {arch}/ =t aggi ng- net hod
hel | o-wor |l d--nmai nline--0. 1--base-0/{arch}/hell o-worl d/

[....]

Y ou should notice that the tar file does not include every file from your project tree. Specifically, it
contains those files that are listed by:

% cd ~/wd/ hell o-worl d

%tla inventory --source --both --all

[....]

Finally, if you poke around inthe{ ar ch} subdirectory of your project tree, you'll see two new items:

%ls
++def aul t - ver si on =t aggi ng- net hod
++pristine-trees hel | o-worl d

Thedirectory ++pri sti ne-trees contains (at some depth) a copy of the tree you just imported.
Thisisacached copy used by other ar ch commands. (Note: In futurereleasesof ar ch , itislikely that
the ++pri sti ne-trees subdirectory will be replaced by a different mechanism.)

If you dig around inthe hel | o- wor | d (patch log) directory, you can find alocal copy of the log file

for the revision you just created (with extra headers added to that log file).

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Checking-in Changes

up: arch Meets hello-world
next: Retrieving Earlier Revisions
prev: Importing the First Revision

So far, if you're following the examples, we've created a new archive and ahel | o- wor | d project
within that archive, and we've imported theinitial version of hel | o- wor | d into the archive.

The most common task you're likely to perform as a programming using arevision control systemisto
commit a set of changes. In this chapter, we'll look at the most basic way that that works.

warld !'= world\n
If you look at our hel | o- wor | d sources, you might notice a spelling error and newline bug:

% cat hw. c

#i ncl ude <stdi o. h>

voi d
hell o world (void)
{
(void)printf ("hello warld");
}

Clearly, wemeanttosay hel | o worl d,nothel |l o warl d and, if we're going to be conventional,
we probably wanted a newline at the end of the message. So, let's fix those bugs now.

Some Free Advice About Log Messages
Free advice is worth what you pay for it. -- anonymous.

Here's the plan for fixing these bugs: We'll change the source to fix the bugs. Then we'll ask ar ch to
record the changes need to fix the bugs in the archive. That second step will create a new revision in the
archive.

http://www.regexps.com/

Aswe noted earlier, whenever you create anew revision, you need to provide alog message for that
revision (see Making the First Log File).

The particular bugs we're about to fix in our toy example are quite trivial -- but in areal world situation,
they would likely be more complicated. Y ou have a choice: you can either wait until all the changes are
done to write the log message describing your changes, or you can write the log message as you go
along.

Here's the free advice: write the log message as you go along. In other words, take notes as you hack. In
termsof t | a commands, that means to start the bug fix process with:

% cd ~/wd/ hell o-worl d

tla make-1 og
++| 0g. hel | o-worl d--nmai nline--0.1--1 ord@nf. net--2003-exanpl e

Then edit your new log file so that it reads:

Summary: Fix bugs in the "hello world" string
Keywor ds:

The Summar y: thus explains what you intend to do with the upcoming changes. As you work, you can
fill in the body of the log message.

The Edit/Update-Log Cycle
Pretending that these bugs are more complicated than they actually are, here's how the work might go:

Fix the spelling error. Changewar | d towor | d .

Update the log message. Add a note to the log file:

Summary: Fix bugs in the "hello world" string
Keywor ds:

Spell "world" correctly (not "warld").

Fix the newline error. Add a newline to the message.

Update the log message again. Add a note to the log file:

Summary: Fix bugs in the "hello world" string
Keywor ds:

Spell "world" correctly (not "warld").

Add a newline to the hello world nessage.

Oh My Gosh -- What Have | Done?

So you've just worked long and hard on these complex bug fixes. Wouldn't it be a good ideato review
your work once more before publishing it?

No problem, ar ch can help:

tla changes --diffs

[]

*** patched regular files

**x% [hw. C

[....]
@-4,7 +4,7 @D
voi d
hell o world (void)
{
- (void)printf ("hello warld");
+ (void)printf ("hello world\n");

}
[....]

Ahal Now we know. It's time to record that change in the archive.

Storing Changes in the Archive

So now let's record those changes in the archive.

If you didn't take our free advice (see Some Free Advice About Log Messages), now is the time to create
alog message (hint: t | a nake-1 0g).

To save your changesin the archive, ssimply:

%tla commt

[....]

After thecomm t completes, thereisanew revision in the archive:

%tla revisions hello-world--mainline--0.1
base-0
patch-1

or in more detail:

%tla revisions --summary hello-world--mainline--0.1
base-0

initial inport
patch-1

Fix bugs in the "hello world" string

Our project tree patch log has been similarly updated:

%tla logs hello-world--mainline--0.1

base-0
patch-1
%tla logs --summary hello-world--nmainline--0.1
base-0
initial inport
pat ch-1

Fix bugs in the "hello world" string

How it Works -- commit of a New Revision
What doesconm t do to an archive?

cd to the directory for the version we are worKking
on:

#

% cd ~/{archives}

% cd 2003- exanpl e/

% cd hel |l o-worl d/

% cd hel |l o-worl d--mainline/

% cd hello-world--mainline--0.1/

%ls

%ls

+versi on-1 ock =README base-0 patch-1

The pat ch- 1 subdirectory is new:

% cd patch-1

%1s
+revi si on-| ock
hel | o-wor |l d--mainline--0.1--patch-1. patches.tar.gz

| og

Asusudl, thelog file isthe log file you wrote, with some extra headers added:

% cat | og
Revi sion: hello-world--mainline--0.1--patch-1
Archive: lord@nf. net--2003-exanple
Creator: Tom (testing) Lord <lord@nf.net>
Date: Mon Jan 27 22:26:13 PST 2003
St andar d- date: 2003-01-28 06: 26: 13 GMVI'
Summary: Fix bugs in the "hello world" string
Keywor ds:
New-files: \

{arch}/hello-world/ [....] /patch-log/patch-1
Modi fied-files: hwc
New- pat ches: \

| ord@nf . net - - 2003- exanpl e/ hel | o-wor | d--mai nli ne--0. 1--
pat ch-1

Spell "world" correctly (not "warld").

Add a newine to the hello world nessage.

The. pat ches. t ar. gz fileissomething called a changeset. It describes the changes you made as
differences between the base- 0 revision and the pat ch- 1 revision. You'll learn more about the
nature of changesetsin later chapters. For now, you can think of a changeset as similar to the output of
di ff -r if used to compare the base- O revision before your recent changes, with that same tree after
your recent changes (or, in the words of one ar ch user: a"patch set on steroids").

In the project tree:

% cd ~/wd/ hell o-world
the commit command had two effects. First, it added alog fileunder { ar ch}/ hel | o-wor | d .
Second, it modified { ar ch} / ++pri sti ne-tr ees to contain a cached copy of the pat ch- 1

revision instead of the base- O revision.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Retrieving Earlier Revisions

up: arch Meets hello-world
next: Shared and Public Archives
prev: Checking-in Changes

If you've followed along with the examplesin earlier chapters, you should have:

Your First Archivewhichisaso your default archive:

%tla nmy-default-archive
| ord@nf . net - - 2003- exanpl e

% tla whereis-archive | ord@nf. net--2003-exanpl e
/usr/ 1 ord/ exanpl es/ {archi ves}/ 2003- exanpl e

A hello-world Project in Your Archive

%tla categories
hel | o-worl d

% tla branches hell o-worl d
hel | o-worl d--mai nli ne

%tla versions hell o-world--nmainline
hell o-worl d--mainline--0.1

Two Revisions of the hello-world Proj ect

%tla revisions hello-world--mainline--0.1
base-0
pat ch-1

In this chapter, you'll learn how to retrieve revisions from your archive.

http://www.regexps.com/

Checking Out the Latest Revision
Y ou might also have aleft-over project tree. If so, let's get rid of that:

% cd ~/wd

%1 s
hel | o-wor | d

%rm-rf hello-world

L et's suppose that you now want to get the latest sources for the hello world project. For that, you want
to use the get command:

%tla get hello-world--mainline--0.1 hello-world

...]

%1 s
hel | o-worl d

%ls hello-world
hw. ¢ main.c {arch}

Checking Out An Earlier Revision
L et's suppose we want to check out an earlier version of the hel | o- wor | d project.
Notice that in the previous example, we asked just for a particular version of the project:

%tla get hello-world--mainline--0.1 hello-world
NNNNNNNNNNN NNNNNNNN NNN NNNNNNNNNNN

| |

| | | target directory
| | |

| | |

| |

ver si on nunber

| branch nane

cat egory nane

We can get an earlier revision name by specifying its patch level explicitly:

%tla get hello-world--minline--0.1--base-0 hello-world-0
NNNNNNNNNNN NNNNNNNN NN\N NNNNNN NNNNNNNNNNNNN

| | target directory

I
I
I
| | patch | evel nane
I
I
I

ver si on nunber

branch nane

cat egory nane

%Il s
hel | o-worl d hel | o-worl d-0

%ls hello-world-0
hw. c mai n.c {arch}

Y ou can see the changes made from base- 0 to pat ch- 1 with, for example, di ff -r :

%diff -r hello-world-0 hello-world

diff -r hello-world-0/hw.¢c hell o-worl d/ hw. c
7c7

< (void)printf ("hello warld");

;-- (void)printf ("hello world\n");
[...]

How it Works -- Retrieving Revisions With get

Retrieving the base- O revision is easy. Asyou should recall, the base- O revision isstored as a
compressed tar file of the complete source tree (see How it Works -- What import Does). When asked to

retrieve base- 0 , theget command essentialy just unpacks that tar file.

Retrieving the pat ch- 1 revision happensin two steps. Recall that pat ch- 1 is stored as a changeset
that describes the differences between base- 0 and pat ch- 1 (see How it Works -- commit of a New
Revision). Therefore, get works by first retrieving the base- 0 revision, then retrieving the pat ch- 1
changeset, then using that changeset to modify the base- O treeand turn it into apat ch- 1 tree.
Internally, get uses atlacommand called dopat ch to apply a changeset, but if you are familiar with
di f f/ pat ch patchsets, then you can think of dopat ch as"patch on steroids".

Let's suppose that instead of committing just one change you'd committed many changes: not just a
pat ch- 1 revision but pat ch- 2 , pat ch- 3 and so forth. In essence, get will apply each changeset
in order to create the revision you requested.

Note: Infact, get isabit more complicated than is described here. On the one hand, there are
performance optimizations that can spare get from having to apply along list of changesets. On the
other hand, there can be revisions created by t ag rather than conm t , for which different rules apply.
You'll learn more about these exceptionsin later chapters.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Shared and Public Archives

up: arch Meets hello-world
next: The update/commit Style of Cooperation
prev: Retrieving Earlier Revisions

In the earlier chapters, you learned how to create your first archive, start a project, check in theinitia
sources and subsequent changes, and retrieve past revisions.

In this chapter you'll learn how to make an archive available over a network and begin to learn how
multiple programmers can share asingle archive.

Registering for Network Access to Archives
Asyou should recall, an archive has both alogical name, and a physical location:

%tla archives
| ord@nf . net - - 2003- exanpl e

NNNNNNNNNNNNNNNNNNNNNNNNNN

| [usr/lord/ {archives}/2003-exanpl e

I NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

| archive | ocation

archi ve nane

(See Creating a New Archive.)

Some archives can be accessed over a network, currently via any of the protocols:

FTP

SFTP

Wb DAV
plain HTTP

Later in this chapter, you'll learn how to create such archives.

http://www.regexps.com/

For now, you should know that to access such an archive, you register it's name and physical location,
using a URL for the physical location.

For example, to accessan HTTP or WebDAYV archive:
%tla register-archive |lord@nf. net--2003b \
http://regexps. srparish.net/{archives}/|ord@nf. net--2003b
or an FTP archive:
%tla register-archive | ord@ egexps.com-2002 \
ftp://ftp.regexps.coni{archives}/|ord@ egexps.com-2002
Y ou can see that these commands have taken effect:

%tla archives
| ord@nf . net--2003b
http://regexps. srparish.net/{archives}/|ord@nf. net--2003b
| ord@nf . net - - 2003- exanpl e
[usr/ | ord/ exanpl es/ {archi ves}/ 2003- exanpl e
| or d@ egexps. comt - 2002
ftp://ftp.regexps.coni{archives}/|ord@ egexps.com-2002

Working with Several Archives at Once
After you've registered additional archives, how do you access them?

Onetrivia way isto make the archive you are interested in your default:

%tla nmy-default-archive | ord@nf.net--2003

%tla categories
[...categories in the renote archive...]

It can, of course, be inconvenient to keep changing your default archive. So for now, let's restoreit to the
archive we've been using in the examples:

%tla my-default-archive | ord@nf. net--2003-exanpl e

There are two other ways to access a remote archive:
Selecting an Archive with -A
Every command that operates on archives accepts a- A option which can be used to override the default:

%tla nmy-default-archive
| ord@nt . net - - 2003- exanpl e

%tla categories -A |lord@nf. net--2003
[... categories in |lord@nf.net--2003 ...]

Usage Note: A - A argument takes precedence over your default archive but is overridden by fully
gualified project names (see below).

Fully Qualified Project Names

Commands that accept project names allow you to use fully qualified project names . A fully qualified
name is formed by prefixing an archive name, followed by a slash, to the project name:

cat egory narne:
tla => | ord@nf.net--2003/tl a

branch name:
tl a--devo => | ord@nf.net--2003/arch--tla

Ver si on nane:
tla--devo--1.0 => | ord@nf.net--2003/tl a--devo--1.0

revi si on nane;

tla--devo--1.0--patch-1 => | ord@nf. net--2003/tl a--devo--1.0--
pat ch-1

Asinthis example:

%tla ny-defaul t-archive
| ord@nf . net - - 2003- exanpl e

%tla branches | ord@nf. net--2003/hell o-world
[... branches of hello-world in |ord@nf.net--2003 ...]

Usage Note: A fully qualified name takes precedence over both - A arguments and your default archive.

Read-only Archives

Operating system and server access controls can be used to limit some or all usersto read-only access.
For example, FTP isusually configured in such away that anonymous users can read, but not modify
the archive.

Creating Local Mirrors, Remote Mirrors, and Remote Archives

A mirror is an archive whose contents are copied from another archive. Y ou can not commit to a mirror
in the ordinary way, you can only update it's copy of it's source.

There are two primary uses for mirror archives: oneisto make alocal copy of aremote mirror (so that
It's contents can be accessed without going over a network); the other is to make a remote copy of alocal
archive (so that others can access that copy).

Mirroring a Remote Archive Locally

Let's suppose that, in order to have the fastest possible access to it, or to be able to use it while
disconnected, you want to mirror a remote archive locally rather than accessing it over network.

Supposing that you wanted to do thiswith | or d@nf . net - - 2003b , there are three steps (suppose
$remote_location is something like http://my.site.com//archives/lord@emf.net--2003b).

First, register the remote archive under a pseudonum, formed by appending - SOURCE to it's name:

%tla register-archive |ord@nf. net--2003b- SOURCE
$renote_| ocation

Second, create your local mirror:

% tla make-archive --mrror-fromlord@nf. net--2003b- SOURCE
$l ocal | ocation

That command will, as aside effect, register | or d@nf . net - - 2003b as the name of your local
mirror.

Finally, copy datafrom the remote archive:

%tla archive-mrror |ord@nf. net--2003b

Whenever the remote archive has been added to, you can incrementally update your mirror by repeating
thetl a archive-mrror step.

If you don't want to mirror the entire archive, you can optionally limit the mirror to specific categories,
branches, or versions. See tla archive-mirror -H for more.

Mirroring a Local Archive Remotely

Let's suppose that you have alocal archive m ne@onewher e. com, and you'd liketo "publish" a
mirror of that archive on the Internet so that other people can read fromit.

Assuming that you aready have m ne@onmewher e. comregistered, you can create the remote mirror
with:

%tla mke-archive --mrror m ne@onewhere. com
$renote_| ocati on

Arch will write directly to $remote_location, so it must be awriteable transport such as sftp, and not
something such as standard http.

Y ou can initialize or incrementally update the contents of the remote mirror with:
%tla archive-mrror m ne@onewhere.com
One common situation for many people isthat they are able to install static files as part of aweb site, but

they can't provide WebDAV access to that web site. Even under those conditions you can still publish an
arch archive, though there are two subtleties.

First, when running make-archive, you need to provide an extraflag:

% tla nmake-archive --listing --mrror m ne@onewhere.com\
$renote | ocation

The--1istingflagcausesarchtokeep. | i sti ng filesup-to-date in the mirror, and that, in turn,
allows people to read from the archive using arch over vanillaHTTP (sans WebDAYV support).

Second, it _is_possibleforthe. | i sti ng filesto fall out of date (for example, if you kill an
ar chi ve-m rror command at just theright time . If you know or suspect that has occurred, you can
repair the archive in question by running archive-fixup asin this example:

%tla archive-fixup m ne@onewhere. com M RROR

Making a Remote Repository

Although mirroring is acommon use of remote repositories, it is possible to create remote repositories
which are not mirrors, and then to commit to those directly.

One can create aremote repository with acommand such as:

% tla make-archive $archive nane $renpte | ocation

or, to create a remote repository with .listing files:

%tla make-archive --listing $archive_nanme $renote_| ocation

Mixing Access Modes

There is nothing to prevent you from making a single archive available via multiple access methods. For
example, you can register an FTP accessible archive using alocal-filesystem location on the machine
that contains the FTP directory, but ask other usersto register it withanft p: URL.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

The update/commit Style of Cooperation

up: arch Meets hello-world
next: Introducing Changesets
prev: Shared and Public Archives

In earlier chapters, you learned how to add a project to an archive, store the initial sources, store changes
made to those sources, and retrieve revisions from the archive.

In the previous chapter, you learned how to make an archive network accessible.

This chapter will begin to explore how multiple programmers can share an archive, with each of them
making changes to a particular project.

Y ou should take note at the outset that there are really many subtle variations on how programmers can
share archives and otherwise cooperate on a given project. We're starting here with one of the very
simplest techniques.

Alice and Bob Hack main

Let's suppose that Alice and Bob are both working on the hel | o- wor | d project and that they are
sharing asingle archive. In the examples that follow, we'll play both roles.

For starters, each programmer will need their own project tree:

% cd ~/wd

%[... renove any directories left fromearlier exanples ...]

%tla get hello-world--mainline--0.1 hello-world-Alice

[....]

%tla get hello-world--mainline--0.1 hello-worl d-Bob

[....]

Alice'stask isto add some legal notices to each file. When she's done (but has not yet used conm t to
write her changes to the archive), the files ook this way:

http://www.regexps.com/

% cd ~/wd/ hell o-worl d-Alice

% head -3 nain.c
/* Copyw ong 1998 howdycorp inc. Al rights reversed.*/

extern void hello world (void);

% head hw. c
/* Copyw ong 1998 howdycorp inc. Al rights reversed. */

#i ncl ude <stdi o. h>

Bob, meanwhile, has added a much-needed comment to mai n :

% cd ~/wd/ hel | o-wor | d- Bob

% cat nmain.c
extern void hello world (void);

I nt
main (int argc, char * argv[])
{

hello world ();

/* Exit wwth status O

*/

return O;

}

Note that the two programmers now have modified versions of hel | o- wor | d , but neither
programmer has the other's changes.

Bob commits First
Let's suppose that Bob isthefirst to try to commit his changes. Just to review, there are two steps.

First, Bob prepares alog message:

% cd ~/wd/ hel | o-wor | d- Bob

% tla make-1og
++| 0og. hel | o-worl d--nmai nline--0.1--1 ord@nf. net--2003-exanpl e

[Bob edits the | og nessage.]
% cat ++l og. hell o-worl d--nmainline--0.1--1ord@nf. net--2003-exanpl e
Summary: comrented return from main

Keywor ds:

Added a comment explaining how the return from min'
relates to the exit status of the program

Thenhecalscomm t :

%tla commt

...]

Alice Can Not commit Yet
Now it's Alice's turn:

% cd ~/wd/ hell o-worl d-Alice

% tla make-1 og
++| 0og. hel | o-worl d--nmai nline--0.1--1 ord@nf. net--2003-exanpl e

[Alice edits the | og nessage. |
% cat ++l og. hell o-worl d--mainline--0.1--1ord@nf. net--2003-exanpl e
Summary: added copyw ong statenents

Keywor ds:

Added copywong statenents to the source files so
t hat nobody can steal HowdyCorp's code.

And then tries to commit;

%tla commt
commt: tree is not up-to-date
(mssing latest revision is
| ord@nf . net - - 2003b- - 2003- exanpl e/ hel | o-wor | d- - mai nl i ne--0. 1--
pat ch-2)

The problem here is that Bob's changes have already been stored in the archive, but Alice's tree doesn't
reflect those changes.

Studying Why Alice Can Not commit

Theconmm t command told Alicethat her treeis"out of date". That means that changes have been
committed to the archive that her tree doesn't have yet.

She can examine the situation in alittle more depth by asking what her tree is missing:

%tla mssing
pat ch- 2

or for more detail :
%tla mssing --sunmary
patch-2
comrented return from nain

which you should recognize as the Sunmar y: line from Bob's log message.

She can get even more detail with the (previously introduced) r evi si ons command (see Storing the
First Revision in the Archive).

She can view Bob's entire log message:

%tla cat-archive-l1og hell o-worl d--mainline--0.1--patch-2
Revi sion: hello-worl d--mainline--0.1--patch-2

Archive: lord@nf. net--2003-exanple

Creator: Tom (testing) Lord <lord@nf.net>

Date: Wed Jan 29 12:46:50 PST 2003
St andar d- date: 2003-01-29 20:46: 50 GV
Summary: comrented return from main
Keywor ds:
New-files: {arch}/hello-world/[....]
Modi fied-files: main.c
New pat ches: \
| ord@nf . net - - 2003- exanpl e/ hel | o-wor | d--mai nli ne--0. 1--patch-2

Added a comment explaining how the return from main'
relates to the exit status of the program

By looking at the headers of that message, Alice can figure out, for example, that Bob modified thefile
mai n. c .

In later chapters, we'll explore more commands that Alice can use to study the changes that Bob made,
but for now, let's turn to how Alice can add those changes to her tree.

The update Command

Alice needs to combine her changes with Bob's before she can conm t her changes. One easy way to
do that isthe updat e command:

% cd ~/wd

%tla update --in-place hello-world-Alice

[....]

Now she will find Bob's changes added to her tree:

% cd hell o-worl d-Alice

% cat main.c
/* Copyw ong 1998 howdycorp inc. All rights reversed. */

extern void hello world (void);

I nt

main (int argc, char * argv[])

{

hello_world ();

/* Exit with status O

*/

return O;
}
/* arch-tag: main nodule of the hello-world project
*/

Since no further changes are missing:

%tla mssing
[no out put]

conm t ishappy to proceed:

%tla commt

[0]

L earning Note: If you're following along with the examples, you should still have atreein hel | o-
wor | d- Bob that has Bob's changes, but not Alice's. Try various commands for that directory to explore
(m ssi ng,updat e ,changes and so forth).

How it Works -- The update Command

A full explanation of how updat e worksis alittle beyond the scope of this chapter. You'll be able
understand updat e in detail after afew of the later chapters (on changesets and patch logs).

For now, if you are familiar with di f f and pat ch , you can think of it thisway:

When updat e isrunin Alice'stree, it notices that the archiveisup to apat ch- 2 revision, but that her
tree was checked out asaget of the pat ch- 1 revision. updat e worksin three steps:

First, it uses acommand called nkpat ch (which iskind of afancier variation ondi f f) to compute a
changeset (afancy patch set) that describes the changes Alice made to her tree.

Second, it checks out a copy of the pat ch- 2 revision and replaces Alice's tree with that revision.

Third, updat e usesdopat ch (afancier pat ch) to apply the changeset from the first step to the new
tree.

Y ou may be wondering how patch conflicts are handled. The examples above were carefully crafted to
avoid any conflicts. Don't worry -- we'll get to that topic soon enough (see Inexact Patching -- How

Conflicts are Handled).

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Introducing Changesets

up: arch Meets hello-world
next: Exploring Changesets
prev: The update/commit Style of Cooperation

It is often extremely useful to compare two project trees (usually for the same project) and figure out
exactly what has changed between them. A record of such changesis called a changeset or adelta .

Changesets are avery central concept to ar ch -- much of ar ch isdefined in terms of operations
performed with changesets.

If you have a changeset between an "old tree" and a"new tree", you can "apply the changeset” to the old
tree to get the new tree -- in other words, you can automatically make the editing changes described by a
changeset. If you have some third tree, you can apply the patch to get an approximation of making the
same changes to that third tree.

ar ch includes sophisticated tools for creating and applying changesets.

« mkpatch

. dopatch
. Inexact Patching -- How Conflicts are Handled

mkpatch

up: Introducing Changesets
next: dopatch

nmkpat ch computes a changeset describing the differences between two trees. The basic command
syntax is:

%tla nkpatch ORI G NAL MODI FI ED DESTI NATI ON

which compares the trees ORI G NAL and MODI FI ED.

http://www.regexps.com/

nmkpat ch creates anew directory, DESTI NATI ON, and stores the changeset there.

When nkpat ch compares trees, it uses inventory ids. For example, it considers two directories or two
files to be "the same directory (or file)" if they have the sameid -- regardiess of where each islocated in
Its respective tree. (See Inventory |ds for Source.)

A changeset produced by nkpat ch describes what files and directories have been added or removed,
which have been renamed, which files have been changed (and how they have been changed), and what
file permissions have changed (and how). When regular text files are compared, nkpat ch produces a
context diff describing the differences. nkpat ch can compare binary files (saving compl ete copies of
the old and new versions if they differ) and symbolic links (saving the old and new link targets, if they
differ).

A detailed description of the format of a changeset is provided in an appendix (see The arch Changeset
Format).

dopatch

up: Introducing Changesets
next: Inexact Patching -- How Conflicts are Handled

prev: mkpatch

dopat ch isused to apply a changeset to tree:

% tla dopatch PATCH SET TREE

If t r ee isexactly the same asthe the "original" tree seen by nkpat ch , then the effect is to modify
t r ee sothat it is exactly the same as the the "modified” tree seen by nkpat ch , with one exception
(explained below).

"Exactly the same" means that the directory structure is the same, symbolic link targets are the same, the
contents of regular files are the same, and file permissions are the same. Modification times, files with
multiple (hard) links, and file ownership are not reliably preserved.

The exception to the "exactly the same" ruleisthat if the patch requires that files or directories be
removed fromt r ee , those files and directories will be saved in a subdirectory of t r ee with an eye-
splitting name matching the pattern:

++r enoved- by- dopat ch- PATCH- - DATE

where PATCH is the name of the patch-set directory and DATE atimestamp.

Inexact Patching -- How Conflicts are Handled

up: Introducing Changesets
prev: dopatch

What if atree patched by dopat ch isnot exactly the same as the original tree seen by nkpat ch ?

Below isabrief description of what to expect. Complete documentation of the dopat ch processis
included with the source code.

dopat ch takes an inventory of the tree being patched. It uses inventory ids to decide which files and
directories expected by the changeset are present or missing from the tree, and to figure out where each
file and directory is located in the tree.

Simple Patches If the changeset contains an ordinary patch or metadata patch for alink, directory or
file, and that fileis present in the tree, dopat ch applies the patch in the ordinary way. If the patch
applies cleanly, the modified file, link, or directory isleft in place.

If asimple patch failsto apply cleanly, dopat ch will alwaysleave behind a. ori g file (thefile
originally in the tree being patched, without any changes) and a. r ej file (the part of the patch that
could not be applied).

If the patch was a context diff, dopat ch will also leave behind the file itself -- partially patched.

If an (unsuccessful) patch was for abinary file, no partially-patched file will be left. Instead, there will
be:

.orig -- the file originally in the tree bei ng patched,
wi t hout nodifications.

.rej -- a conplete copy of the file fromthe nodified tree,
with perm ssions copied from .orig".

.patch-orig -- a conplete copy of the file fromthe original

tree seen by "nkpatch', wth perm ssions
retained fromthat original

- Or -

the synbolic link fromthe original tree seen

by "nkpatch' with perm ssions as in the
ori gi nal

tree.

If an (unsuccessful) patch was for a symbolic link, no partially patched file will be left. Instead there will
be:

.orig -- the unnodified file fromthe original tree

.rej -- asynbolic link with the target intended by the
patch and perm ssions copied from.orig

.patch-orig -- a conplete copy of the file fromthe original
tree seen by "nkpatch', with perm ssions
retained fromthat original

Or
the synbolic link fromthe original tree seen
by "nkpatch' with permi ssions as in the

ori gi nal
tree.

Patchesfor Missing Files

All patches for missing files and directories are stored in a subdirectory of the root of the tree being
patched called

==m ssi ng-fil e- pat ches- PATCH DATE

where PATCH is the basename of the changeset directory and DATE atime-stamp.

Directory Rearrangements and New Directories

Directories are added, deleted, and rearranged much as you would expect, even if you don't know it's
what you'd expect.

Suppose that when nkpat ch was called the ORI G NAL tree had:

Directory or file: | d:
alx.c id_ 1
al bar.c id 2

but the MODI FI ED tree had:

al x.c id 1
aly.c id 2

with changes to both files. The patch will want to rename the filewithidi d_2 toy. ¢ , and change the
contents of thefileswithidsi d_1andid_2 .

Suppose, for example, that you have atree with:

al foo.c id 1
alzip.c id 2

and the you apply the patch to that tree. After the patch, you'll be left with:
a/foo.c id_ 1
aly.c (was zip.c) id 2

with patches made to the contents of both files.

Here's a sample of some subtleties and ways of handling conflicts:

Suppose that the original tree seen by mkpatch has:

Directory or file:

./ a
.lalb
.lalblc

and that the modified directory has:

.l a
.lalc
.lalclb

Finally, suppose that the tree has:

X

I x/b
./ xlc
.Ixlclb
.Ixlclq

When patch gets done with the tree, it will have:

'

Since the patch doesn't

id a
id b
id c

id a

id b

I d_new directory

id different file nanmed b
id c

id a
do anyt hi ng

to change the directory wth id_a.

.Ixlc.orig
I xlc.rej

Id new directory
id c

Since the patch wants to nmake the

directory with id_c a subdirectory naned "c"
of the directory with id a, but the tree
already had a different directory there,
wth the id id new directory.

Axlc.rejlb

id_b

Since the patch wants to renanme the directory

with id b to be a subdirectory naned "b"
of the directory with id_c.

.Ix/c.origlb id different file nanmed b
Si nce the patch nade new changes to this file,
it stayed with its parent directory.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Exploring Changesets

up: arch Meets hello-world
next: Introducing replay -- An Alternative to update
prev: Introducing Changesets

The previous chapter introduced changesets and the commands nkpat ch and dopat ch (fancy
variations on the theme of the traditional di f f and pat ch programs).

In this chapter, we'll look in abit more detail about how changesets are used in archives, how they are
used by theconm t and updat e commands, and what this implies for how you can make the best use
of arch.

How it Works -- commit Stores a Changeset in the Archive

Suppose that you get the latest revision of a project, make some changes, write alog message, and
commi t those changesto an archive. What happens?

In essence, commit:

1 Computes a changeset that describes what changes you've made compared to the latest revision.
2 Creates a directory for the new revision in the archive.

3 Stores your |og message and the changeset in the archive.

In that light, you might want to go back and review an earlier section: How it Works -- commit of a New

Revision.

get-changeset Retrieves a Changeset from an Archive

Earlier, you learned that the cat - ar chi ve- | og command retrieves alog message from an archive
(see Studying Why Alice Can Not commit).

Y ou can also retrieve a changeset from an archive:

% cd ~/wd

http://www.regexps.com/

%tla get-changeset hello-world--mainline--0.1--patch-1 patch-

[]

get - changeset retrieves the changeset from the archive and, in this case, storesit in a directory
caledpatch-1.

(The format of changesetsis described in The arch Changeset Format.)

Using show-changeset to Examine a Changeset

The changeset format is optimized for use by programs, not people. It's awkward to look at a changeset
"by hand". Instead, you may wish to consider getting areport of the patch in diff format by using:

% tla show changeset --diffs patch-1

If you've been following along with the examples, you'll recognize the output format of show-
changeset fromthe changes command introduced earlier (see Oh My Gosh -- What Have |

Done?).

Using commit Well -- The Idea of a Clean Changeset

When you commit a set of changes, it is generally "best practice" to make sure you are creating a clean
changeset .

A clean changeset is one that contains only changes that are all related and for a single purpose. For
example, if you have several bugsto fix, or several featuresto add, try not to mix those changesup in a
singlecomm t .

There are many advantages to clean changesets but foremost among them are:

Easier Review It iseasy for someone to understand a changeset if it is only trying to do one thing.

Easier Merging Aswell learn in later chapters, there are circumstances in which you'll want to look at

acollection of changesets in an archive and pick-and-choose among them. Perhaps you want to grab
"bug fix A" but not "new feature B". If each changeset has only one purpose, that kind of cherrypicking
Is much more practical.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Introducing replay -- An Alternative to update

up: arch Meets hello-world
next: Selected Files Commit
prev: Exploring Changesets

updat e isn't the only way to catch-up with a development path. Another optionisr epl ay :

% cd ~/wd/project-tree
%tla replay

[....]

What does that actually do?

An update Refresher

L et's suppose that we check out an old version of hel | o-wor | d :

% cd ~/wd
%tla get hello-world--mainline--0.1--patch-1 hw patch-1

[...]

It's easy to see that the resulting tree is not up-to-date:

% cd hw patch-1
%tla mssing
pat ch-2

patch-3

Now, let's suppose that we make some local changesin hw pat ch- 1 and then run updat e . What
happens?

L ocal changes are computed against patch-1. In other words, a changeset is created that represents the
changes from a pristine copy of the pat ch- 1 revision to the current state of the project tree (hw-
patch-1).

http://www.regexps.com/

A copy of patch-3ischecked out. updat e starts with a pristine copy of the pat ch- 3 revision.

The changeset is applied to the patch-3 tree. The changes computed in the first step are made to the
new tree.

There's another way, though:

The replay Command
We have alocal copy of the pat ch- 1, perhaps with some local changes:

% cd ~/wd/ hw pat ch-1
% tla m ssing
patch-2

patch-3

Recall that the pat ch- 2 and pat ch- 3 revisions each correspond to a specific changeset, stored in the
archive (see How it Works -- commit of a New Revision).

We could add those changes to your local tree by using get - changeset to retrieve each changeset,
and dopat ch to apply it (see get-changeset Retrieves a Changeset from an Archive, and dopatch).
That'salot of tedious work, though, so ar ch provides a more automated way to accomplish that same
effect:

% cd ~/wd/ hw patch-1
%tla replay

[....]

%tla mssing

[no out put]

r epl ay will do just what we've described: get patches from the archive and apply them one-by-one.
One word of caution, though: if one of those patches generates conflicts, r epl ay will stop there and let
you fix the conflicts. Y ou can then pick up wherer epl ay left off by running r epl ay asecond time.

How it Works -- replay

If you've followed along with the tutorial so far, the way that r epl ay works should be pretty obvious.
In fact, it's just exactly how we described it above. r epl ay usesm ssi ng to find out what changes
your treeismissing, get - changeset to retrieve those changesets, and dopat ch to apply them.

There'safair amount of "bookkeeping” involved in doing that -- and that bookkeeping iswhat r epl ay
automates for you.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Selected Files Commit

up: arch Meets hello-world
next: Elementary Branches -- Maintaining Private Changes
prev: Introducing replay -- An Alternative to update

Earlier, you learned how to commit all of the changes within atree at once (see Checking-in Changes).

Y ou also have read a bit about the importance of making "clean" changesets (see Using commit Well --

The |dea of a Clean Changeset).

This chapter shows you alittle trick that you can use in avery specific but common situation.

The Quick Fix Problem

L et's suppose that you have alarge project tree and you're in the middle of making some complicated
change. Y ou've modified many files, but there are many others that you haven't touched.

Suddenly, you notice atrivial bug in one of the untouched files.
What you'd redlly liketodoiis:
1) Stop and fix the trivial bug.
2) Commit just that trivial bug fix.
3) Get back to work on the complicated changes.
How can you do that?
The Brute Force Solution to the Quick Fix Problem
There's an easy "brute force" solution to the problem.
Simply:

Check out a fresh copy of the latest revision. In other words, create a second project tree with no
modifications.

http://www.regexps.com/

Fix thetrivial bugin the new tree and commit. Now you've committed a clean change with just the
trivial bug fix.

Use update or replay to Bring Your Original Tree Up to Date. That will add the trivial bug fix back
to your tree with the partially completed changes.

That works, but it can be alittle awkward. Do you really need to start a second project tree just to fix
thistrivial bug?

Sometimes the awkwardness is well worth it. For example, your project might have a policy the before
every conm t , you must run some tests. In that case, yes, you really do need a second tree.

Sometimes the awkwardness is nearly unavoidable. For example, if thetrivial bug fix involves
modifying files that you've already heavily modified, then again, the brute force technique may be the
simplest approach (but also, takealook attl a undo --hel pandtla redo --help).

But there isasimpler way that sometimes applies:
Solving the Quick Fix Problem with commit --
Asit turnsout, conm t lets you commit only the changes made to just afew files.

If your quick fix changesfi |l e-a. candfil e-b. c ,then after preparing alog message, you can
commit just those files with:

%tla coomt -- file-a.c file-b.c

Y ou should note that the files committed this way must not be new files and that, even if those files have
been renamed, the conmi t will record only the changes internal to those files, not the renames.

The Quick Fix Problem -- There's More Than One Way to Do It

In the text above, we speculated about a "brute force" solution to the quick-fix problem that involved
checking out awhole new project tree.

Two other command, t | a undo andt| a redo, provide an aternative "brute force" solution with
some advantages. These are described in alater chapter (see xref : 111)../

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System

The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Elementary Branches -- Maintaining Private Changes

up: arch Meets hello-world
next: Patch Logs and Project Tree History
prev: Selected Files Commit

In this chapter, we'll begin to explore the concept of branching , which you may be familiar with from
other revision control systems.

If you are already familiar with the concept, you should be aware that branching in ar ch almost
certainly goes far beyond what you are accustomed to.

Regardless of whether or not you are familiar with the concept, fear not -- we'll be starting slow:
A Branching Scenario -- The Need for Private Changes

Let's suppose for the moment that the hel | o- wor | d project is making its sources available as a
public, read-only mirror (see Shared and Public Archives).

Early on, you (someone not involved inthe hel | o- wor | d project) decides that you'll want to use their
program, but that you'll need to make some local changes.

Asasort of toy example, let's suppose that you've decided that in your environment, saying hello world
IS unacceptable -- you really require the more correctly punctuated hello, world .

Now, here's the problem: sure, you can download their sources and make that change. But meanwhile,
the project is going to keep working. They're going to keep making changes. So, you'll be faced with a
perpetual task of repeatedly downloading their latest sources and copying your changesto their latest
version.

ar ch can help automate that task, and this chapter explains how.
Making a Branch from a Remote Project in a Local Archive

In the examples that follow, you'll be changing roles. Instead of "playing” Alice or Bob, the
programmers on the hel | o- wor | d project, you'll be playing Candice: athird party.

Let's start by giving Candice her own archive to use, and making that the default archive:

http://www.regexps.com/

% tl a make-archi ve candi ce@andi ce. net --2003-candi ce \
~/ {ar chi ves}/ 2003- candi ce

%tla nmy-default-archive candi ce@andi ce. net--2003-candi ce
default archive set (candi ce@andi ce. net--2003-candi ce)

(Y ou can review what those commands do by reading Creating a New Archive.)

Candice needsto create ahel | o- wor | d project in her own archive. She can use:

%tla archive-setup hello-world--candice--0.1

She doesn't have to use the same project name that Alice and Bob are using and, in fact, in this case she
chose a different branch name. (To review those commands, see Starting a New Project.)

When Alice and Bob created their archive, they used i npor t to create thefirst revision. Since we're
creating a branch, we'll use a different command.

For the sake of example, let's suppose Candice is going to start from the pat ch- 1 revision of Alice and
Bob's archive:

%tla tag \
| ord@nf . net - - 2003- exanpl e/ hel | o-wor | d--mai nli ne--0. 1- - pat ch-
1\
hel | o-worl d--candice--0.1

[....]

There are afew things worth noting about that command.

First, note that we used afully qualified revision nameto refer to Alice and Bob's pat ch- 1 revision.
That's because that revision isin some archive other than the current default archive. (See Working with

Several Archives at Once.)

Next, note that we specified the pat ch- 1 revision explicitly. If we had left of the - - pat ch- 1 suffix,
then thet ag command would assume we meant the latest revision in Alice and Bob's archive (which
happensto be pat ch- 3).

What tag Just Did

After using t ag , Candice now has anew revision in her archive:

%tla revisions --summary hell o-worl d--candice--0.1
base- 0
tag of | ord@nf. net--2003-exanpl e/ hello-world--nmainline--0.1--
patch-1

She can retrieve that revision in the usual way:

%tla get hello-world--candice--0.1 hw candice

[]

% 1| s hw candice
hw. ¢ mai n. c {arch}

Nifty arch Feature: If you've followed aong closely, you should have noticed that Candice created a
branch in her archive from an arch revision stored in another archive entirely. In our examples, both of
these archives happen to be on the local file system but that isn't necessary: Candice could have formed
her branch even if she was accessing Alice and Bob's archive over the network.

Usage Caution: Candice'sjob isn't quite done yet. The next section explains another step she'll probably
want to take.

Caching a tag Revision

Candice used t ag to create a branch from Alice and Bob's archive. When she uses get to check-out
that revision, what happens? Roughly speaking, ar ch notices that the revision is a branch, then consults
Alice and Bob's archiveto really get the source.

The question then arises: what if Alice and Bob's archive "goes away"? As things stand, if that happens,
Candice will no longer be ableto get from her branch.

She can fix that though by caching in her archive all of the information needed to build the revision:

% tla cacherev hell o-worl d--candi ce--0. 1--base-0

[]

and confirm that that worked with:

% tla cachedrevs hell o-worl d--candice--0.1
hel | o-wor | d--candi ce--0. 1--base-0

Thereafter, ar ch will no longer rely on Alice and Bob's archive to retrieve Candice'sbase- O revision.

Exploring the New Branch

Earlier, Candice created her branch and used get to check it out. Let's examine that tree:

% cd ~/wd/ hw candi ce

%tla log-versions
candi ce@andi ce. net - - 2003-candi ce/ hel | o-wor | d--candi ce--0. 1
| ord@nf . net - - 2003- exanpl e/ hel | o-worl d--mai nline--0.1

Note that Candice's tree has patch logs both for Alice and Bob's versions, and for her own branch:

%tla | ogs --summary \
| ord@nf . net - - 2003- exanpl e/ hel | o-worl d--mai nline--0.1
base- 0
initial inport

pat ch-1
Fix bugs in the "hello world" string

%tla logs --summary hell o-worl d--candice--0.1
base-0
tag of \
| ord@nf . net - - 2003- exanpl e/ hel | o-wor | d--mai nli ne--0. 1--patch-1

There are not any later changes on Candice's branch:

%tla mssing hello-world--candice--0.1
[no out put]

but recall that Alice and Bob are already up to pat ch- 3 :

%tla mssing -A |lord@nf. net--2003-exanpl e \
hel | o-worl d--mainline--0.1

pat ch- 2

pat ch- 3

Making a Local Change
After theinitial t ag , Candice can commit changes to her branch in the usual way.

Let's suppose that she has edited hw. ¢ so that it now reads (in part):

% cat hw. c

[...]

voi d

hell o_worl d (voi d)

{ (void)printf ("hello, world\n");
}

[...]

and that's she's prepared a log message:

% cat ++l og. hell o-worl d--candi ce--0. 1--1 ord@nf. net--2003-candi ce
Summary: Punctuated the output correctly
Keywor ds:

This program should say "hello, world" not "hello world".

Now she can simply commit in the usual way, creating her own pat ch- 1 revision:

%tla commt

[0]

%tla revisions --summary hel |l o-worl d--candi ce--0.1
base-0

tag of \

| ord@nf . net - - 2003- exanpl e/ hel | o-wor | d--mai nli ne--0. 1--patch-1
pat ch-1

Punctuated the output correctly

Updating from a Branched-from Version

Meanwhile, Alice and Bob have gone on to create their revisions pat ch- 2 and pat ch- 3 . How can
Candice add those changes to her branch?

Weéll, really, ar ch provideslots of techniques. Using commands we've already introduced, she could
use either updat e or r epl ay . In this example, we'll demonstrate using r epl ay .
% cd ~/wd/ hw candi ce

%tla replay -A |l ord@nf. net--2003-exanple \
hel | o-worl d--nmainline--0.1

Note that we used a - A argument to say which archive we are replaying changes from, and aversion
name to say which changes we want. In thiscase, r epl ay applied the changesets for pat ch- 2 and
pat ch- 3 to Candice's tree.

Thisuse of r epl ay isaform of merging : Candice'slocal changes have been merged with Alice and
Bob'smai nl i ne changes.

L earning Note: If you're following along with the examples, you should examine hw. ¢ and notice that
Candice'schangetothepri nt f string and Alice's addition of a"copywrong" notice are both included.

L earning Note: You should also check out a second copy of Candice's pat ch- 1 revision and
experiment with doing the same merge using updat e instead of r epl ay . You might have to look at
tl a updat e -hel p tofigureout exactly what options and arguments to provide.

Note also that, so far, we've only made these changes to Candice's project tree -- they haven't been
checked into Candice's archive. To actually record the merge in her archive, she'll have to make alog
message and commit in the usual way (see Checking-in Changes).

Thereis, however, one more convenience to point out. When Candice writes her log message, shelll
presumably want to note that the merge took place and what it involves. ar ch includes acommand
whose output isideal for inclusion in such alog message:

% cd ~/wd/ hw candi ce

%tla | og-for-nerge
Pat ches appli ed:

* | ord@nf. net--2003-exanpl e/ hel |l o-worl d--nmai nline--0.1--patch-3
added copyw ong statenents

* | ord@nt. net--2003-exanpl e/ hel | o-wor |l d--nmai nline--0.1--patch-2
commented return from main

How It Works -- tag and Elementary Branches

What did t ag do? Let'slook at Candice's archive:

% cd ~/{archives}

% cd 2003-candi ce

% cd hell o-world

% cd hell o-worl d--candi ce

% cd hell o-worl d--candice--0.1

%ls
+versi on-1 ock base-0 patch-1
pat ch-2

Of particular interest isthe base- O revision -- the one created by t ag :

% cd base-0

%1s

CONTI NUATI ON

hel | o-wor | d- - candi ce--0. 1--base-0. patches.tar. gz
hel | o-wor | d--candi ce--0. 1--base-0.tar. gz

| og

% cat CONTI NUATI ON
| ord@nf . net - - 2003- exanpl e/ hel | o-wor | d--mai nli ne--0. 1--patch-1

Thefile CONTI NUATI ONidentifiesthisrevision asat ag revision. Its contents tell us what revision we
branched from.

The changeset for thisrevision (. . . . pat ches. tar. gz) wasalso created by t ag . If you explore
that changeset (recall get - changeset and show changeset) you'll seethat al it doesisadd a
log entry to the tree's patch log.

The sourcefile(. . . base-0. tar. gz) wascreated by ar chi ve- cache-revi si on. It contains
a complete copy of Candice'sbase- 0 revision. Since that fileisthere, get isnot obligated to look at
Alice and Bob's archive to construct thisrevision.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Patch Logs and Project Tree History

up: arch Meets hello-world
next: Development Branches -- The star-merge Style of Cooperation
prev: Elementary Branches -- Maintaining Private Changes

In the previous chapter, we began to learn about branching and merging. We saw how commands like
m ssi ng,updat e ,andr epl ay can be used to keep track of and apply changes from multiple
branches of a project.

In this chapter, we'll explain a bit about patch logs : the mechanism that is used to keep track of the
history of a project tree, including that part of the history that is used for intelligent merging.

Y ou should recall first encountering patch logsin earlier chapters (for example, when first initializing a
project tree, in Starting a New Source Tree). In this chapter, patch logs are explained in greater depth.

Project Trees Have Patch Logs

Recall that every initial import, tag revision, and changeset revision in an archive has an associated log
message. That message consists of the headers and body that you supply to commands such asi npor t
and conmi t , plus additional headers that are automatically generated by ar ch .

When aproject treeisfirst imported to an archive, the patch log entry for the new revision is added to
thetree. Whenaconm t takes place, as part of the process of committing, the log entry for the new
revision is added to the tree. If you get arevision created by thet ag command, you'll also find that it
contains a patch log entry for the tag revision.

Patch log entries accumulate. Thus, for example, each commit adds a new log entry and all earlier log
entries are preserved. Each tag revision includes not only the entry for the tag, but all log entries
inherited from the revision being tagged.

Returning to our earlier examples, let'stake alook at Alice and Bob's pat ch- 2 revision:

% cd ~/wd
[... renove directories fromearlier exanples ...]

%tla get -A lord@nf. net--2003-exanple \

http://www.regexps.com/

hel | o-wor |l d--mainline--0.1--patch-2 \
hw AnB- 2

[]

% cd ~/ hw AnB- 2

First, we note that patch logs are sorted by ar ch version names. This tree has logs from only one
version:

%tla log-versions
| ord@nf . net - - 2003- exanpl e/ hel | o-worl d--nmai nline--0.1

Within that version, it haslogs for the initial import, and two changesets:

%tla logs -A lord@nf. net--2003-exanpl e \
--sunmary \
hel | o-worl d--mainline--0.1

base-0

initial inport
pat ch-1

Fix bugs in the "hello world" string
pat ch- 2

commented return from nain

Examining one of those log entriesin particular:

%tla cat-log -A lord@nf. net--2003-exanpl e \

hel | o-wor |l d--mai nline--0.1--patch-2
Revi sion: hello-worl d--mainline--0.1--patch-2
Archive: lord@nf. net--2003-exanple
Creator: Tom (testing) Lord <lord@nf.net>
Date: Wed Jan 29 12:46:50 PST 2003

St andar d- date: 2003-01-29 20:46: 50 GV
Summary: comrented return from main

Keywor ds:
Newfiles: \
{arch}/[...]/hello-world--mainline--0.1/[...]/patch-I|og/
pat ch- 2
Modi fied-files: main.c
New pat ches: \
| ord@nf . net - - 2003- exanpl e/ hel | o-wor | d--mai nli ne--0. 1--
pat ch- 2

Added a comment explaining how the return from main'
relates to the exit status of the program

we can see, for example, that the pat ch- 2 changeset modified the file mai n. ¢ and added anew file,
the log entry itself (whose name is abbreviated in the output displayed above).

Other examples worth considering come from Candice's tree. Recall that she used t ag to fork from
Alice and Bob'stree at their pat ch- 1 revision. Therefore we see:

% cd ~/wd

%tla get -A candi ce@andi ce. net --2003-candi ce \
hel | o-wor | d--candi ce--0. 1--patch-2 \
hw C- 0

...]

% cd ~/ hwC0

%tla |log-versions
candi ce@andi ce. net - - 2003-candi ce/ hel |l o-wor| d--candi ce--0. 1
| ord@nf . net - - 2003- exanpl e/ hel o-worl d--mainline--0.1

%tlalogs -Alord@nf.net--2003-exanple \
--summary \
hel | o-worl d--mainline--0.1
base-0
initial inport

pat ch-1
Fix bugs in the "hello world" string

%tla logs -A candi ce@andice. net--2003-candice \
--sunmary \
hel | o-worl d--candi ce--0.1
base-0
tag of \
| ord@nf . net - - 2003- exanpl e/ hel | o-wor | d--mai nli ne--0. 1--
pat ch-1

How It Works -- missing

In earlier chapters, you learned how the command m ssi ng can tell you about changes commited to
archives, but not yet present in a given project tree (see Studying Why Alice Can Not commit and
Exploring the New Branch).

It should now be easy to understand how those commands work. ar ch can find the list of all revisions
inagiven version using ther evi si ons command:

%tla revisions -A | ord@nf. net--2003-exanple \
hel | o-worl d--mainline--0.1

base-0

pat ch-1

pat ch- 2

pat ch- 3

Those are the logs in the archive. ar ch can find out the list of revisions for which a project tree haslog
entrieswith | ogs :

%tla logs -A lord@nf. net--2003-exanpl e \
hel | o-worl d--mainline--0.1

base-0

pat ch-1

pat ch-2

The difference between those two lists is the output of m ssi ng :

%tla mssing -A lord@nf. net--2003-exanpl e \
hel | o-worl d--mainline--0.1
patch-3

The Concept of Change History and Tree Ancestry

Patch logs give important insight into the history of atree. There are two views worth mentioning: the
change history view, and the tree ancestry view.

Change History

When atree hasalog for agiven comm t changeset, that means that the changes from that comm t
have been applied to the tree: the comm t changeset is part of the "change history" of the tree. If the
changeset were a bug fix, for example, then thisisalikely indication that the bug fix is present in the
tree.

Note: The mere fact that a given changeset is part of the change history of atree isn't absolute proof that
the changes made by that changeset are present in the tree. For example, those changes might have been
"undone" by alater change. Nevertheless, the change history of atreeis auseful tool for exploring and
understanding its state.

Tree Ancestry

Informally, we say that an archived revision is atree ancestor of a given project treeif it has patch log
entries for all of the revisionsin the version of that archived revision up to to the archived revision itself.

Thus, for example, Candice's tag revision has Alice and Bob's pat ch- 1 revision as an ancestor because
it haslogsfor Alice and Bob's revisions:

base-0
patch-1

And Candicess pat ch- 2 revision, which merges in changes from Alice and Bob's pat ch- 2 and
pat ch- 3, has both of those additional revisions as ancestors (see Updating from a Branched-from

Version).
Automated ChangelLogs

Thecommandt | a changel og generates a GNU-style ChangelLog file from a patch log:

% cd ~/wd

%tla get -A candi ce@andi ce. net --2003-candi ce \
hel | o-worl d--candi ce--0.1 \
hw C- | at est

[0

% cd ~/wd/ hw C-| at est

% tla changel og

do not edit -- automatically generated by arch changel og
arch-tag: automatic-ChangelLog-- [...]
#
2003-01-30 GMr Tom (testing) Lord <lord@nf.net> pat ch- 2
Sunmary:
merge from mainline sources
Revi si on:

hel | o-wor | d- - candi ce--0. 1--patch-2
Pat ches appli ed:
* | ord@nf. net--2003- exanpl e/ hel | o-wor | d--mai nline--0.1--
pat ch- 3
added copyw ong statenents
* | ord@nf. net--2003- exanpl e/ hel | o-wor | d--mai nline--0.1--

pat ch-2
comrented return from nain

new files:

{arch}/ [...] /hello-world--mainline--0.1[...] /patch-2
{arch}/ [...] /hello-world--mainline--0.1[...] /patch-3

nodi fied files:
hw. ¢ mai n.c

new pat ches:
| ord@nf . net - - 2003- exanpl e/ hel | o-wor | d--mai nli ne--0. 1--patch-2
| ord@nf . net - - 2003- exanpl e/ hel | o-wor | d--mai nli ne--0. 1--patch-3

2003-01-30 GMr Tom (testing) Lord <l ord@nf.net> pat ch-1
Sunmary:
Punctuated the output correctly
Revi si on:

hel | o-wor | d--candi ce--0. 1--patch-1

Thi s program shoul d say "hello, world" not "hello world".

nodi fied files:

hw. ¢
2003-01-30 GMr Tom (testing) Lord <l ord@nf. net> base- 0
Sunmary:
tag of | ord@nf. net--2003-exanpl e/ hell o-worl d--nmainline--0.1--
pat ch-1
Revi si on:

hel | o-wor | d- - candi ce--0. 1- - base-0
(automatically generated | og nessage)
new pat ches:

| ord@nf . net - - 2003- exanpl e/ hel | o-wor | d--mai nli ne--0. 1--base-0
| ord@nf . net - - 2003- exanpl e/ hel | o-wor | d--mai nli ne--0. 1--patch-1

Note that the generated ChangelLog includesat agl i ne . If you save the output of the changel og
command in a project tree, either using taglineids or giving it an explicit id that matchesthet agl i ne s
id, the commands such asconm t will automatically keep the ChangelLog up to date.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Development Branches -- The star-merge Style of Cooperation

up: arch Meets hello-world
next: Symbolic Tags
prev: Patch Logs and Project Tree History

In earlier chapters, we developed an extended example out of the hel | o- wor | d project.

Alice and Bob, the primary programmers on the project, started one archive and created some revisions
there.

Candice, a user of the project, created her own archive, started a branch of the hel | o- wor | d project,
and began maintaining her own local modifications.

In this chapter, we'll begin to consider a situation that is more typical of free software projectsin the real
world. Here, we'll consider Alice and Bob to be the maintainers of a public project, and Candice asa
major remote contributor to the project. We'll identify the new revision control needs that arise from that
arrangement, and look at some ar ch commands that help to satisfy those needs.

Promoting an Elementary Branch to a Development Branch

So far, if you've been following the examples, Candice has an elementary branch. She made a branch
from the mainline, made some local changes, and has kept her branch up-to-date with Alice and Bob's
mainline.

We're supposing, at this point, that Alice and Bob want to merge Candice's changes into the mainline.

WEell, that merging work has already been done. Candice's latest revision is exactly the tree that Alice
and Bob want. They can incorporate that merge into their mainline very ssmply, by committing
Candice's latest revision to their own mainline:

%tla get -A candi ce@andi ce. net --2003-candi ce \
hel | o-worl d--candi ce--0.1 \
hw C

% cd hw C

http://www.regexps.com/

%tla set-tree-version -A |lord@nf. net--2003-exanpl e \
hel |l o-worl d--nmainline--0.1

% tla make-1 og
++| 0og. hel l o-worl d--nmai nline--0.1--1 ord@nf. net--2003-exanpl e

[... edit log file (consider "tla log-for-nerge') ...]

% cat ++l og. hell o-worl d--nmainline--0.1--1ord@nf. net--2003-
exanpl e

Summary: nerge from Candi ce's Branch

Keywor ds:

Pat ches appli ed:

* candi ce@andi ce. net --2003-candi ce/ hel | o-wor| d--candi ce- -
0.1--patch-2
nmerge from mainline sources

* candi ce@andi ce. net --2003-candi ce/ hel | o-wor | d--candi ce- -
0.1--patch-1
Punctuated the output correctly

* candi ce@andi ce. net --2003-candi ce/ hel | o-wor| d--candi ce- -
0. 1--base-0
tag of
| ord@nf . net - - 2003- exanpl e/ hel | o-wor | d--mai nli ne--0. 1--
patch-1

%tla commt

[0

Read Carefully Note: Note carefully the trick we just used. Candice's latest revision was exactly what
Alice and Bob wanted -- they combined get withset -t r ee- ver si on to turn Candice's tree into
one they could easily commit to their own mainline.

Simple Development Branches

Let's consider what happens as development proceeds on both branches. For this purpose, welll
introduce something new: away of diagraming branches and the merges between them.

After the examples so far, we have this situation:

mai nl i ne--0.1 candi ce--0.1
base-0 ----------- > base-0 (a tag)
patch-1 --------- ' patch-1
patch-2 ---------- > patch-2
patch-3 ---------- oeeeeee- '
patch-4 <-----------

which tells us that the candi ce branch isatag of pat ch- 1 from the mainline; that at pat ch- 2 of
the candi ce branch, there was a merge of everything up to pat ch- 3 of themai nl i ne ; and finaly
that pat ch- 4 of the mainline merges in everything up to pat ch- 2 from the candi ce branch.

Whenever we have a such a diagram in which none of the merge lines cross, that isa simple
development branch .

The significance of a simple development branch is that it'samodel for how two development efforts
can work asynchronously on one project. Within each effort -- on each branch -- programmer's use the
"update/commit” style of cooperation (see The update/commit Style of Cooperation). However, changes

on one branch have no effect on the other until the two branches are merged.

Introducing The Development Branch Merging Problem

L et's suppose that more work happens on both the nmai nl i ne and candi ce branches, leaving us with:

mai nl i ne--0.1 candice--0.1
base-0 ----------- > base-0 (a tag)
patch-1 --------- ' pat ch-1
patch-2 --------- > patch-2
patch-3 ---------- B ' patch-3
patch-4 <----------- ' pat ch-4
pat ch-5

%tla revisions --summary -A candi ce@andi ce. net --2003-
candi ce \
hel | o-wor | d--candi ce--0.1
base- 0
tag of
| ord@nf . net - - 2003- exanpl e/ hel | o-wor | d--mai nli ne--0. 1--
pat ch-1
pat ch-1
Punctuated the output correctly
pat ch- 2
nmerge from mainline sources
pat ch- 3
added a period to output string
pat ch- 4
capitalized the output string

%tla revisions --summary -A |ord@nf. net--2003-exanpl e \
hel | o-worl d--mainline--0.1

base-0

initial inport
patch-1

Fix bugs in the "hello world" string
pat ch- 2

commented return frommain
pat ch- 3

added copyw ong statenents
pat ch- 4

merge from Candi ce's Branch
pat ch-5

fi xed the copyrwong for hw c
pat ch- 6

fixed the copyrwong for main.c

Let's consider a scenario in which our goal isto merge the new work on the mai nl i ne branch into the
candi ce branch. In other words, we want to wind up with:

mai nl i ne--0.1 candi ce--0.1

base-0 ----------- > base-0 (a tag)
patch-1 --------- ' pat ch-1
patch-2 - > patch-2
patch-3 ---------- L oo ' patch-3
patCh'4 <----------- ' patch_4
patch-5 -------- > patch-5
patch-6 ------------ -

How can we perform that merge? Let's start with the latest pre-merge candice revision (pat ch- 4):

%tla get -A candi ce@andi ce. net--2003-candi ce \
hel | o-wor | d--candi ce--0. 1--patch-4 \
hw C- 4

[....]

% cd hwC-4

Here are two techniques that don't work:
replay Does Not Solve the Development Branch Merge Problem

repl ay will try to apply all "missing”" changes from the mai nl i ne into the candi ce tree. Thelist of
changeset it will apply is given by:

%tla mssing --summary \
- A candi ce@andi ce. net - - 2003- exanpl e \
hel | o-worl d--mainline--0.1
patch-4
nmerge from Candi ce's Branch
patch-5
fi xed the copyrwong for hw c
patch-6
fi xed the copyrwong for nmain.c

Problematic in that list ispat ch- 4 . It'samerge that includes all of the changes from the candi ce
branch up toitspat ch- 2 level. Y et those changes are already present in the pat ch- 4 revision of the
candi ce branch -- sor epl ay will be applying them redundantly (cause patch conflicts).

Note of Warning: Ther epl ay command will not prevent you from running further replays even
though the source tree is not in a consistant state. TLA in its current incarnation does not merge reject
files. This leaves open the possibility that patch rejects will belost if asecond r epl ay is performed
before the rejects from the first replay are resolved. (Some day TLA may be able to merge multiple
rejects into a combined reject.)

Advanced User Note: Ther epl ay command has options that would allows us to skip the pat ch- 4
revision from the mainline. That sort of solves the problem, but it has some drawbacks. First, it means
that pat ch- 4 will continue to appear inthem ssi ng output of thecandi ce branch. Second, thereis
nothing that guarantees us that the pat ch- 4 changeset contains only merges from thecandi ce
branch. If Alice and Bob made other changesin pat ch- 4 , and we skip that changeset, those other
changes will be lost.

update Does Not Solve the Development Branch Merge Problem

Suppose wetry to updat e from the mai nl i ne branch. Recall that updat e will compute a changeset
from the youngest mai nl i ne ancestor of the project tree to the tree itself, then apply that changeset to
the latest mai nl i ne revision.

We have anotation for this. A changeset from Xto Y iswritten:

delta(X, Y)

In this case, updat e will start by computing a changeset from the mai nl i ne pat ch- 3 revision to
our project tree:

del ta(mainline--0.1--patch-3, hwC4)

The tree that results for applying a changeset from X to Y to atree Z is written:

delta(X, V) [Z]

In other words, the result of updat e in our example can be described as:

delta(mainline--0.1--patch-3, hwC4) [mainline--0.1--patch-6]

Here's the problem, though. The pat ch- 3 revision of nmai nl i ne was not previously merged with the
candi ce branch. Thus, the changeset

del ta(mai nline--0.1--patch-3, hw G 4)

will include, among other changes, the changes from pat ch- 1 and pat ch- 2 of the candice branch.

Unfortunately, the tree we'll be applying that changeset to, mai nl i ne--0. 1- - pat ch-6, has
already been merged with base- 0. . . pat ch- 2 of thecandi ce branch.

Aswithr epl ay , updat e will cause merge conflicts by making zredundant changes.
Solving One Instance of the Development Branch Merging Problem
Using just our del t a notation and merge diagrams, let's look at solving this merge problem cleanly.

Remember that we currently have:

mai nl i ne--0.1 candi ce--0.1

base-0 ----------- > pbase-0 (a tag)
patch-1 --------- ' patch-1
patch-2 ---------- > patch-2
patch-3 ---------- oeeeeee- ' patch-3
patch-4 <----------- ' pat ch-4

pat ch-5

pat ch-6

and our goal isto create a new merge, for patch-5 of Candice's branch:

-------- > patch-5

We might decide to start with anmai nl i ne branch and mergein missing candi ce changes, or start
with acandi ce tree and mergein missing mai nl i ne changes. Let's assume the latter (merging into a
candi ce tree).

Inthiscase, mai nl i ne- 0. 1 revision pat ch- 6 is"up to date" with candi ce- 0. 1 revision pat ch-
2 . We want too apply all changes since then to the latest candi ce revision:

Wi t h:
ancestor := candice--0.1--patch-2
nerge_in := mainline--0.1--patch-6
t ar get = canidice--0.1--patch-4
answer := delta(ancestor, nerge_in)[target]

The arrows in the merge diagram are critical to figuring out the right answer. For example, suppose that
the arrow from Candice's pat ch- 2 tothe mai nl i ne revision pat ch- 4 wasn't there. Then the
answer would be:

Wit h:
ancestor := mainline--0.1--patch-3
nmerge_in := mainline--0.1--patch-6
t ar get = canidice--0.1--patch-4
answer : = delta(ancestor, nerge_in)[target]

Tracing out the arrows for agiven merge is atedious process. It's automated by the st ar - ner ge
command:

star-merge -- Solving the Development Branch Merging Problem in General

It's a bit beyond the scope of this tutorial to explain the complete solution to the development branch
merging problem in general. The two solutions shown above illustrate two cases, but dightly different
solutions are sometimes necessary.

What you should know is that when you have simple development branches (see Simple Devel opment
Branches), the command st ar - mer ge knows how to merge between them without causing spurious
merge conflicts.

In ordinary use, you invoke st ar - mer ge in the tree you want to merge info, providing as an argument
the tree you want to merge from:

%tla get -A candi ce@andi ce. net --2003-candi ce \
hel | o-wor | d--candi ce--0. 1--patch-4 \
mer ge-tenp

%tla star-nerge |ord@nf. net--2003/hello-world--mainline--0.1

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Symbolic Tags

up: arch Meets hello-world
next: Cherrypicking Changes
prev: Development Branches -- The star-merge Style of Cooperation

As projects grow larger and more complicated, it is often useful to be able to give a symbolic name to
particular revisions within an arch version.

For example, let's suppose that the hel | o- wor | d project has many revisions:
mai nl i ne

pat ch- 23

It may be that, as development proceeds, occasional "snapshot” releases are made from the mai nl i ne .
Not every revision becomes a snapshot, but some do.

It would be convenient to provide alabel of which revisions became snapshots:

mai nl i ne

base- 0

patch-1 snapshot O
pat ch-2

pat ch-12 snapshot 2

pat ch- 23 snapshot 3

http://www.regexps.com/

Thet ag command, introduced earlier, can be used for this purpose (see Making a Branch from a

Remote Project in aLoca Archive).

When we first encountered t ag , it was used just to create the base- O revision of an elementary

branch. It can also be used to create a branch all of whose revisions are tags.

L et's suppose that we'll be creating a branch called hel | o- wor | d- - snapshots--0.1.

Diagramatically, we'll have:

mai nl i ne snapshot s
base-0 -------- > pase-0 (tag)
patch-1 ------------- e > patch-1 (tag)
pat ch- 2 -

patch-12 ------------ -

pat ch- 23

To createthe snapshot tagfor pat ch- 23 :

%tla tag hell o-worl d--mainline--0.1--patch-23\
hel | o-wor | d--snapshots--0.1

after which we'll have:

mai nl i ne snapshot s

base-O -------- > base-0 (tag)
patch-1 ------------- e > patch-1 (tag)
pat ch- 2 R > patch-2 (tag)

patch-23 ------------ -

In effect, the snapshot s branch isakind of "symbolic name" with history. We can get the latest
revision named by that symbol with:

%tla get hello-world--snapshots--0.1

and earlier revisions by naming specific revisions, e.g.:

%tla get hello-world--snapshots--0.1--patch-1

Usage Caution: Asarule of thumb, your branches should be either commi t based branches (all
revisions after base- 0 are created by conmi t) or tag-based branches (all revisions are created by

t ag). Commandssuch asr epl ay , updat e , and st ar - ner ge are based on the presumption that
you stick to that rule. While it can be tempting, in obscure circumstances, to mix conm t andt ag ona
single branch -- it isn't generally recommended.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Cherrypicking Changes

up: arch Meets hello-world
next: Multi-tree Projects and Configuration M anagement
prev: Symbolic Tags

So far we've learned about elementary branches for maintaining changes apart from a primary
development branch and devel opment branches for coordinating asynchronous work on a single project
(see Elementary Branches -- Maintaining Private Changes and Development Branches -- The star-merge

Style of Cooperation).

In this chapter, we'll briefly describe athird kind of branch that's useful when a project consists of
multiple "forks" -- multiple, equally primary branches.

Let's suppose, somewhat abstractly, that Alice and Bob's mainline has grown quite large:

mai nl i ne

pat ch- 23
pat ch- 24
pat ch- 25

pat ch-42
At some point, perhaps because some controversy has emerged over choicesmadeinthemai nl i ne , a
new developer, Derick, declares afork and starts his own branch:

mai nl i ne deri ck

http://www.regexps.com/

patch-23 ----"'
pat ch- 24
pat ch- 25

pat ch-42

We aready know that Derick can use updat e or r epl ay to keep current with the mainline, but what
he doesn't want to? What if Derick wants the changesin pat ch- 25 and pat ch- 42 , but none of the
other post-pat ch- 23 changesfromthe mai nl i ne ?

Derick can apply specific changes from the mai nl i ne by specifying the exact revision he wants, rather
than just specifying a version:

% cd ~/wd
%tla get hello-world--derick--0.1 derick
% cd derick

%tla replay -A | ord@nf. net--2003-exanple \
hel | o-wor |l d--mai nline--0.1--patch-23

%tla replay -A |ord@nf. net--2003-exanple \
hel | o-wor | d--mai nline--0.1--patch-42

%tla mssing -A lord@nf. net--2003-exanpl e \
hel | o-worl d--mainline--0.1

pat ch- 24

pat ch- 25

pat ch-41

%tla logs -A lord@nf. net--2003-exanpl e \
hel |l o-worl d--mainline--0.1

base-0

patch-1

pat ch- 22
pat ch- 23
pat ch-42

Cherrypicking changes in this manner isn't necessarily easy or even practical. It depends, for example,
onthemai nl i ne changes being "clean changesets' (see Using commit Well -- The Idea of a Clean

Changeset).

Nevertheless, for some projects, especially those characterized by lots of "forks", this technique can be
useful.

L earning Note: Multiple revisions may be replayed with a single command, simply by giving all of
them on the command line at once. Ther epl ay command also hasa- - | i st option which can useful
for cherrypicking many changes at once. If you find yourself replaying specific revisions often, you
should takealook at the- - | i st optionintl a replay --help.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Multi-tree Projects and Configuration Management

up: arch Meets hello-world
next: Revision Library Basics
prev: Cherrypicking Changes

Y ou can define meta-projects which are combinations of individual projects that are separately tracked
by ar ch . Thisalowsyou to divide alarge project into smaller, more manageable pieces, each of which
can develop independently of the others, and each of which can be a part of more than one meta-project.

Thisis accomplished by writing config specs, which define the contents of the meta-project and how
they should be arranged in a source tree.

For example, ar ch itself is a meta-project. The source tree contains:

di sts/
di sts/src/
di sts/src/arch/
dists/src/file-utils/
di sts/src/ftp-utils/
di st s/ src/ hackerl ab/
di sts/src/shell-utils/

Each of those directoriesis the root of a project tree (contains a subdirectory named {arch}).

The topmost directory, di st s also contains a subdirectory named conf i gs . In that subdirectory are
the meta-project configuration files. For example:

di sts/
di st s/ configs/
di sts/configs/regexps.com # Toms configuration files
di st s/ confi gs/ regexps. conf devo. arch
di st s/ confi gs/regexps. conirel ease-tenpl ate. arch

Here are the contents of devo. arch :

#

http://www.regexps.com/

Check out an arch distribution fromthe devo branches.

Latest revisions.

#

./src

f ramewor k- - devo
./src/arch
.Isrc/file-utils
Isrc/ftp-utils
./ src/ hackerl ab
./src/shell-utils
./src/text-utils

| or d@ egexps.

| or d@ egexps.
| or d@ egexps.
| or d@ egexps.
| or d@ egexps.
| or d@ egexps.
| or d@ egexps.

com - 2002/ package-

com - 2002/ ar ch--devo
com-2002/file-utils--devo
com-2002/ftp-utils--devo
cont - 2002/ hacker | ab- - devo
com -2002/shel |l -utils--devo
com -2002/text-utils--devo

Each (non-blank, non-comment) line in that file has the format:

LOCATI ON

CONTENTS

which means, to create the meta-project, get the revision indicated by CONTENTS and install it at
LOCATI ON. The CONTENTS field can be a branch (meaning, get the latest revision of the latest version
on that branch), aversion (meaning get the latest revision in that version), or arevision name (meaning

get that revision, exactly).

To check out an entirear ch tree, | first check out di st s fromdevo , thenusebui | d-confi g:

%tla get dists--devo dists

[0

% cd di sts

%tla build-config regexps.com dists. devo

[....]

Once you have a meta-project tree, some other useful commands are:

cat-config : output

I nformati on about a nulti-project config

One use of that command isto generate alist of sub-projects to which some other command can be
iteratively applied:

%tla cat-config CFGNAME | awk '{print $1}' | xargs ...

Additionally, the option - - snap can be usefully applied to a configuration that names subproces by
version rather than revision. It examines the project tree to see what revisions are actually installed at
each of the LOCATI ONs . Then it writes a new config which specify those REVI SI ONS precisely. This
is useful, for example, for recording the specific revisions you are about to turn into a distribution.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Revision Library Basics

up: arch Meets hello-world
next: Advanced Revision Library Use
prev: Multi-tree Projects and Configuration Management

For many purposes, it is useful to have alibrary containing pristine trees of alarge number of revisions
-- for example, all of the revisionsin a particular version. To be practical, though, such alibrary must be
represented in a space-efficient way.

Unix hard-links provide a natural way to store such alibrary. Each successive revision in aseriesisa
copy of the previous, but with unmodified files shared via hard-links.

ar ch provides commands to help you build, maintain, and browse such alibrary.

As apleasant side effect, many ar ch commands are speeded up if the revisions they need to operate are
present in your revision library. You can read more about this in the next chapter.

Your Revision Library Locations
To begin anew revision library, first create a new directory (DI R) and then register its location:

%tla my-revision-library DIR

Y ou can check the location of your library with:

%tla my-revision-library

or unregister it with:

%tla my-revision-library -d DIR

Note that you can have more than one revision library: in effect you have a"path” listing all of your
library locations.

http://www.regexps.com/

Revision Library Format
A revision library has subdirectories of the form:

ARCHI VE- NAME/ CATEGORY/ BRANCH VERSI ON/ REVI SI ON/

Each REVI SI ON directory contains the complete source of a particular revision, along with some
supplemantary subdirectories and files:

REVI SI OV, , pat ch-set/

The patch set that creates this revision from
its ancestor (unless the revision is a full-source
base revision).

Although the permissions on filesin the revision library are determined as determined by patch sets, you
must never modify filesint therevision library. Doing so will cause odd errors and failuresin various
ar ch commands.

Adding a Revision to the Library By Hand
Y ou can add a selected revision to your revision library with:

%tla |ibrary-add REVI SI ON

| i br ary-add will normally add not only REVI SI ONto the library, but all directly preceeding
revisions (recursively) which are from the version as REVISION.

If you want to add only REVISION and no others, use the - - spar se option:

%tla |library-add --sparse REVI SI ON

Finding a Revision in the Library

Y ou can find a particular revision in the library with | i brary-find:

%tla library-find REVI SI ON
PATH TO REVSI ON

The output is an absolute path name to the library directory containing the revision. (Once again, you
must not modify filesin that directory.)

Removing a Revision from the Library
To remove a particular revision from the library, use:

%tla library-renove REVI SI ON
Be aware of the following limitation in the current release: suppose that you add three successive
revisions, A, B, and C. Then you remove B, then re-add B . Now there is a chance that the file sharing

between B and C will be less than optimal, causing your library to be larger than it needs to be. (Y ou can
fix this by then removing and re-adding C.)

Listing Library Contents
Thecommand | i br ar y- ar chi ves listsall archiveswith recordsin the library:

%tla |ibrary-archives
ARCHI VE- NAME
ARCHI VE- NAME

Similarly, you can list categories, branches, versions, or revisions:
%tla library-categories [ARCH VE]
%tla library-branches [ARCH VE/ CATEGORY]

%tla library-versions [ARCH VE/ BRANCH]|
%tla library-revisions [ARCH VE/ VERSI ON|

Individual Files in the Revision Library

Y ou can locate an individual filein arevision library with:

%tla library-file FILE [REVI SI ON|
PATH

or obtain its contents with:

%tla cat-library-file FILE [REVI SI ON|
...file contents...

Both commands accept the options--i d and- -t hi s . With--i d, theargument FI LE isinterpreted
asan inventory id, and the file with that id is found.

With--thi s, FI LEisinterpreted as afile relative to the current directory, which should be part of a
project tree. The file'sinventory id is computed and the corresponding file found in REVI SI ON.

Determining Patch Set Prerequisits

%tla touched-fil es-prereqs REVI SI ON

That command looks at the patch set for REVI SI ON and at all preceding patch sets in the same version
(it searches your library rather than your repository for this purpose). It reports the list of patches that
touch overlapping sets of files and directories -- in other words, it tells you what patches can be applied
independently of others. The command has an option to exclude from consideration file names matching
acertain pattern (e.g. =README or ChangelLog). It has an option to exclude from the output list
patches which have aready been applied to a given project tree. It has an option to report the specific
fileswhich are overlapped.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Advanced Revision Library Use

up: arch Meets hello-world
next: Driving Process Automation with arch Hooks
prev: Revision Library Basics

By default, when you get arevision from an archive, arch stores a"pristine copy” of that revision under
the{ ar ch} directory.

Also by default, when get arevison, arch builds the revision by searching for thei npor t ancestor or
the nearest archive-cached ancestor -- then applying later patches to construct the revision you want.

get and similar operations can be made both faster and more space efficient by using revision libraries.
For example, if get findsthe revision you asked for in alibrary, it will copy it directly from there
(rather than building it by patching) and skip building a pristine copy under { ar ch} .

That's al well and good -- but it can be awkward to have to remember to | i br ar y- add revisions to
your library. This section will show how you can automate the process.

Greedy Revision Libraries

A greedy revision library has the property that whenever arch looksto see if the library contains a
particular revision, if the library _doesn't contain that revision, arch will add it automatically.

Y ou can make a particular revision library directory greedy with the command:

%tla library-config --greedy DR

Sparse Revision Libraries

When arch automatically adds arevision to agreedy library, normally it doesit in the default manner of
| i brary-add : it adds previousrevisionsin the same version as well.

If you were adding arevision to alibrary by-hand you could avoid that behavior with the - - spar se
optiontol i br ary- add . To obtain that behavior for automatically added revisions, use:

%tlalibrary-config --sparse DIR

http://www.regexps.com/

which meansthat if arevision is automatically added to the library located at DIR, it is added as if the - -
spar se optionto | i br ar y- add were being used.

Hard Linked Project Trees

Warning: To save yourself some confusion, do not use the following feature unless you understand (a)
what a hard-link isand (b) what it means for an editor to "break hard links when writing afile". If you
understand those terms, and know that the editor you use does in fact break hard links, then feel free to
use this feature.

You can very rapidly get arevision from arevision library not by copying it, but instead by making
hard-links to it:

%tla get --1ink REVI SI ON

Thebui | d- conf i g command has asimilar option:

%tla build-config --1ink REVI SI ON

This can save considerable disk space and greatly speed up the get operation.

(Thereis, of course, asmall chance that when you use a hard-linked tree something will go wrong and
modify the filesin the revision library. Arch will notice that if it happens and give you an error message
advising you to delete and reconstruct the problematic revision in the library.)

Putting it All Together
To sum up, avery handy and efficient set up involves:
1) Create one or more revision library directories.
2) Make at least some of those libraries greedy and possibly sparse.
3) Usethe- - | i nk optiontoget and bui | d-config.

When you work this way, and arch needs to automatically add arevision to alibrary for you, it will
search for alibrary on the appropriate device (for hard-links purposes). Among those it will search first
for alibrary that already contains the same version as the revision you want and, failing that, for a

greedy library.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Driving Process Automation with arch Hooks

up: arch Meets hello-world
next: Speeding up arch by Caching Revisionsin Archives
prev: Advanced Revision Library Use

In some circumstances, it is very useful to trigger actions upon the detection of changesto an archive.
For example, you might want to send an email notification whenever new revisions are checked in.

This process occurs through arch by use of hooks. Each time that arch performs a command that
modifies an archive, arch will attempt to run ~/.arch-params/hook, which must be set as executable.

Aguments given to the hook $1 : action performed (e.g. commit)

Environment Variables

Arguments Given to hook

Whenever arch performs a command that affects an archive, arch will run hook with the first argument
set asthe action performed. If | user runs a command (such as make-archive) then hook will be called
multiple times with multiple arguments (such as make-archive, make-category, make branch and make-
version)

The arguments that may be seen are:

import, commit, tag, make-archive, make-category, make-branch and make-version.

Environment Variables Passed to hook

Tla also passes certain variables to the hook when appropriate. Variables passed by Tla are prefaced
with ARCH_. Variables that may be passed include:

Name : ARCH_ARCHIVE Description : The archive involved in the action Seen : all actions Example:
lord@emf.net--2003-example

Name : ARCH_CATEGORY Description : Name of category created Seen : make-category Example :
hello-world

http://www.regexps.com/

Name : ARCH_BRANCH Description : Name of branch being created Seen : make-branch Example :
mainline

Name : ARCH_VERSION Description : Name of version being created Seen : make-version Example:
0.1

Name : ARCH_REVISION Descriptoin : Name of revision involved Seen : import, tag, commit
Example : patch-6

Name : ARCH_LOCATION Description : Location of archive being created Seen : make-archive
Example : /ust/lord/ar chi ves /2003-example

Name: ARCH_TREE_ROOQOT Description : Seen : commit, import Example : /home/lord/wd
Name: ARCH_TAGGED_ARCHIVE Description : Seen : tag Example :

Name: ARCH_TAGGED_REVISION Description : Seen : Example :

An Example of Using hook

#! / bi n/ sh

if ["$1" == "commit"]; then
tla push-mrror |ord@nf. net--2003-exanple \
| ord@nf . net - - 2003- exanpl e- M RROR;
fi

A more complex Examples of Using hook

#!/ bi n/ sh

case "$1" in
comm t)
case "$ARCH CATEGORY" in
hel | o-wor | d)
case "$ARCH BRANCH' in
mai nl i ne)
RELEASETYPE=" st abl e"

devel)
RELEASETYPE="unst abl e"

;

echo "The $RELEASETYPE version of Hello, Wrld been

upgr aded. \
New versions are avail able at ftp.hello.coni |\

mai |l to hell o-users@ello.com-s "Hell o upgraded"

goodbye-wor | d)
case "$ARCH BRANCH' in
mai nl i ne)
RELEASETYPE=" st abl e"
devel)
RELEASETYPE="unst abl e"

*)
esac;
echo "The stable version of Goodbye, Cruel Wrld

been upgraded. \

RELEASETYPE="[unknown] "

New versions are avail able at ftp.hello.coni |\
mai lto hello-users@ello.com-s "Hell o upgraded”

esac

esac

Robustness Issues with hook

Unfortunately, some fundamental physical properties of the universe make it impossible for arch to
guarantee that hook will be invoked only once for each new category, branch, version, or revision. A
(presumably rare) well timed interrupt or system failure can cause not i f y to invoke actions more than
once for agiven change to the archive.

Conseguently, actions should be designed to be robust against that eventuality.

Additionally, if arch has been run concurrantly, then the hook may run concurrantly as well. This means
that projects using hook should take care that hook is capable of running with simultaneous copies.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Speeding up arch by Caching Revisions in Archives

up: arch Meets hello-world
next: The arch Changeset Format
prev: Driving Process Automation with arch Hooks

This chapter will teach you one technique for speeding up accessto an ar ch archive.
Consider an ar ch version that contains many revisions.

mai nl i ne

pat ch- 23
pat ch- 24
pat ch- 25

pat ch- 42

Suppose that a user (with no local pristine cache) wantsto get the pat ch- 42 revision. get proceeds
by first getting and unpacking the base- 0 revision, then getting each pat ch- <N> changeset, in order,
and applying those to the tree.

If the list of changesets that need to be applied islong, or the sum of their sizeslarge in comparison to
the tree side, then thisimplementation of get is needlessly inefficient.

One way to speed up get isby archive caching revisions -- storing "pre-built" copies of some revisions
with the archive.

For example, the command:

%tla cacherev -A | ord@nf. net--2003-exanpl e \

http://www.regexps.com/

hel | o-wor | d--mai nline--0.1--patch-40

will build the pat ch- 40 revision, package it up as atar bundle, and store a copy of that tar bundlein
the pat ch- 40 directory of the archive.

Subsequently, aget of pat ch- 42 will work by first fetching the cached copy of the pat ch- 40
revision, then getting and applying the changesets for pat ch- 41 and pat ch- 42 : asavings of 40
changesets.

Usage Note: At thistime, it'sleft up to you to decide which revisions to cache and which not. You
might decide, for example, to automatically cache certain revisionsfromacr on job or to smply cache
revisions by-hand whenever you notice that get istoo slow. In the future, we hope to add better support
for automatically caching revisions.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

The arch Changeset Format

up: arch Meets hello-world
next: Customizing the inventory Naming Conventions
prev: Speeding up arch by Caching Revisionsin Archives

An arch changeset is a directory containing a number of files and subdirectories. Each is described
below.

Files:
ori g-dirs-index
nod- di rs-i ndex
orig-files-index
nod-fil es-index
Format:
<fil e path><tab><id>
Sorting:

sort -k 2

These contain indexes for all files and directories added, removed, or modified between the two trees.
Files:

ori gi nal -onl y-di r- net adat a

nodi fi ed-onl y-di r-netadata
Format:

<net adat a><t ab><nane>

http://www.regexps.com/

Sorting:

sort -t '<tab> -k 2
Thefield <nmet adat a> contains literal output from the programf i | e- net adat a given the options
- - per m ssi ons . Some example output is:

--perm ssions 777

That output is also suitable for use as options and option arguments to the program set - fi | e-
nmet adat a . Futurereleasesar ch might add additional flags (beside just per m ssi ons).

The list records the file permissions for al directories present in only one of the two trees.
Directories.

renoved-fil es-archive
newfil es-archive

Each of these directories contains complete copies of all filesthat occur in only the original tree
(renoved-fil es-archive)or modifiedtree (new-fi | es-archi ve). Each savedfileis
archived at the same relative location it had in its source tree, with permissions (at |east) preserved.

Directory:

pat ches

This directory contains a tree whose directory structure is a subset of the directory structure of the
modified tree. It contains modification data for directories and files common to both trees.

For afile stored in the modified tree at the path new_nane , the pat ches directory may contain:

new _nane.|link-orig

The original file is a synbolic |ink.

"new nane.link-orig' is atext file containing the
target of that link plus a final newine.

This file is only present if |link target has changed,
or if the link was replaced by a regular file.

new _nane. | i nk- nod

The nodified file is a synbolic link and this file
Is atext file containing the target for the |ink plus
a final newine.

This file is only present if the link target has
changed, or if the link replaces a regular file.

new_nane. ori gi nal

This is a conplete copy of the file fromthe ori ginal
tree, preserving (at |east) permn ssions.

This file is only present if the file was replaced by
a synbolic link, or if the file contents can not be
handl ed by “diff(1)"'.

new _nane. nodi fi ed

This is a conplete copy of the file fromthe nodified
tree, preserving (at |east) permn ssions.

This file is only present if the file replaces a
synmbolic link, or if the file contents can not be
handl ed by “diff(1)"'.

new _nane. pat ch

This is a standard context diff between the original
file and nodified file. One popular version of diff
("GNU diff') generates non-standard context diffs by
omtting one copy of lines of context that are

| dentical between the original and nodified file, so

changed

for now, ".patch' files may have the sane bug.
Fortunately, the only popul ar version of " patch
(" G\NU patch'') is tolerant of receiving such input.

new _nane. neta-orig
new_nane. net a- nod

File metadata (currently only perm ssions) changed
between the two versions of the file. These files
contain output fromthe "file-nmetadata' programwth
the flags --symink --permssions', suitable for
conparison to simlar output, and for use as options
and option argunents to "set-file-netadata'.

These files are also included if a regular file has
repl aced a synbolic link or vice versa.

new nane/ =dir-neta-orig
new_name/ =di r - net a- nod

Directory netadata (currently only perm ssions)

bet ween the two versions of the directory containing
these files. These files contain output fromthe
"file-netadata’ programwith the flags --symink
--permssions', suitable for conparison to simlar
output, and for use as options and option argunents to
"set-file-netadata'.

Note: If aregular file (or symbolic link) replaces a directory, or vice versa, thisisrecorded as afile (or
link) removed (or added) in one tree and added (or removed) in the other.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Customizing the inventory Naming Conventions

up: arch Meets hello-world
next: The GNU General Public License
prev: The arch Changeset Format

In Project Tree Inventories, you learned how thet | a i nvent or y command classifiesfileswithin a

project tree using a set of naming conventions. This appendix explains how you can customize those
naming conventions.

When to Customize Naming Conventions

It's best to make customizations to the naming conventions of a project at the outset: before you
| mport your first revision.

If you must make changes later, then it's essential that your changes do not change the classification of
files already in the latest revision(s) of your project at the time you make the change (otherwise, you are
likely to experience perplexing and undesirable behavior).

How to Customize Naming Conventions

Y ou should begin by reviewing the naming convention algorithm in The arch Naming Conventions. Y ou
can modify that algorithm by changing the regular expression used for each category test.

Y ou can customize naming conventions by modifying thefile. / { ar ch} / =t aggi ng- net hod in
your project trees. That file is created by thei d- t aggi ng- met hod command and initialy, it contains
asingle line which names the id tagging method (nanes ,explicit ,tagl i ne (or the now
deprecated, but popular in some older projects, including arch itself, i npl i ci t)).

In particular, =t aggi ng- net hod can contain blank lines and comments (lines beginning with #) and
directives, one per line. The permissible directives are:

tagline
i nplicit
explicit
names

specify the id tagging nethod to use for this tree

http://www.regexps.com/

excl ude RE

junk RE

backup RE

preci ous RE

unrecogni zed RE

source RE
specify a regular expression to use for the indicated
category of files.

Regular expressions are specified in Posix ERE syntax (the same syntax used by egrep, grep -E , and
awk) and have default values which implement the naming conventions described in The arch Naming
Conventions.

A given regexp directive can occur more than once, in which case the regexps are concatenated as
aternatives. Thus, for example:

source .*\.c$
source .*\.h$

is equivalent to:

source (.*\.c%)|(.*\.h$)

Per-Directory Regexps
A source directory can containa. ar ch-i nvent ory file.

.arch-invent ory filescan contain regexp declarations just like those in =tagging-method (i.e., one
for excl udes ,oneforj unk , etc.) Let's cal these the dir-local regexps. The =t aggi ng- net hod
regexps are the global regexps.

While traversing atree, each file is classified-by-name as follows. the steps which are changed by .
arch-invent ory aremarked with[*] :

0) "." and ".." remain excluded files, no matter what.

[*] 1) if excluded files are being omtted fromthe inventory,

and either the dir-local or global regexp, the file
I s excl uded

2) if the file is a control file, it is source

3) if the file falls into one of the "mandatory categories”
(",," and "++" files) it is categorized as junk or
preci ous respectively.

[*] 4) the dir-local (only) regexps are tried in the usual order:
j unk, backup, precious, unrecogni zed, source. |If the file
matches, it is suitably categorized.

5) the global regexps are tried in the sane order.

6) otherwi se the file is unrecogni zed.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

The GNU General Public License

up: arch Meets hello-world
next: Uh....aLittle Help Here?
prev: Customizing the inventory Naming Conventions

ar ch isfree software: you can redistribute it and/or modify it under the terms of the GNU General
Public License (GPL) as published by the Free Software Foundation (and reproduced below).

This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License (reproduced below) for more details.

| have chosen to use the GPL for this software because | believe it best reflects the duties to society of a

software engineer. It isthe best license for users, for my fellow engineers, and for society asawhole. As
IS beginning to be widely appreciated, this license is a startling profound and influential document and is
worthy of study in its own right.

In acommercia climate that grew up mostly under proprietary licenses (those that fall far short of
protecting the freedoms and promoting the obligations of the GPL), my choice of thislicense has, at the
moment, made it difficult for me to recover the costs of developing arch and to make a profit from my
work going forward. Those are very serious problems, in my opinion. Please see also Uh....a Little Help
Here?.

GNU GENERAL PUBLI C LI CENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Tenple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permtted to copy and distribute verbati mcopies
of this |license docunent, but changing it is not all owed.

Pr eanbl e

The licenses for nost software are designed to take away your
freedomto share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedomto share and change
free software--to make sure the software is free for all its users.

http://www.regexps.com/

This General Public License applies to nost of the Free Software
Foundation's software and to any other program whose authors conm t
to using it. (Sone other Free Software Foundation software is
covered by the GNU Li brary General Public License instead.) You can
apply it to your prograns, too.

When we speak of free software, we are referring to freedom not
price. Qur General Public Licenses are designed to make sure that
you have the freedomto distribute copies of free software (and
charge for this service if you wish), that you receive source code
or can get it if you want it, that you can change the software or
use pieces of it in new free prograns; and that you know you can do
t hese t hings.

To protect your rights, we need to nake restrictions that forbid
anyone to deny you these rights or to ask you to surrender the
rights. These restrictions translate to certain responsibilities
for you if you distribute copies of the software, or if you nodify
it.

For exanple, if you distribute copies of such a program whether
gratis or for a fee, you nust give the recipients all the rights
t hat you have. You nust neke sure that they, too, receive or can
get the source code. And you nmust show themthese terns so they
know their rights.

We protect your rights with two steps: (1) copyright the software,
and (2) offer you this |license which gives you |legal permssion to
copy, distribute and/or nodify the software.

Al so, for each author's protection and ours, we want to nake
certain that everyone understands that there is no warranty for this
free software. |If the software is nodified by soneone el se and
passed on, we want its recipients to know that what they have is not
the original, so that any problens introduced by others wll not
reflect on the original authors' reputations.

Finally, any free programis threatened constantly by software
patents. W wish to avoid the danger that redistributors of a free
programw || individually obtain patent |icenses, in effect naking
the program proprietary. To prevent this, we have nmade it clear
t hat any patent nust be licensed for everyone's free use or not
| i censed at all.

The precise ternms and conditions for copying, distribution and
nodi fication follow

GNU GENERAL PUBLI C LI CENSE
TERMS AND CONDI TI ONS FOR COPYI NG, DI STRI BUTI ON AND MODI FI CATI ON

0. This License applies to any program or ot her work which
contains a notice placed by the copyright holder saying it may be
di stributed under the ternms of this CGeneral Public License. The
"Progrant, below, refers to any such programor work, and a "work
based on the Progranf neans either the Program or any derivative
wor k under copyright law. that is to say, a work containing the
Programor a portion of it, either verbatimor with nodifications
and/ or translated into another |anguage. (Hereinafter, translation
is included without Iimtation in the term"nodification".) Each
| i censee i s addressed as "you".

Activities other than copying, distribution and nodification are not
covered by this License; they are outside its scope. The act of
running the Programis not restricted, and the output fromthe
Programis covered only if its contents constitute a work based on

t he Program (i ndependent of havi ng been nade by running the
Program). \Wether that is true depends on what the Program does.

1. You may copy and distribute verbatimcopies of the Progranis
source code as you receive it, in any nmedium provided that you
conspi cuously and appropriately publish on each copy an appropriate
copyright notice and disclainer of warranty; keep intact all the
notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of
this License along with the Program

You nmay charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for
a fee.

2. You may nodify your copy or copies of the Program or any
portion of it, thus formng a work based on the Program and copy
and distribute such nodifications or work under the terns of Section
1 above, provided that you also neet all of these conditions:

a) You nust cause the nodified files to carry pronm nent notices

stating that you changed the files and the date of any change.

b) You nust cause any work that you distribute or publish, that
in whole or in part contains or is derived fromthe Program or
any part thereof, to be licensed as a whole at no charge to all
third parties under the terns of this License.

c) If the nodified programnormally reads comrands interactively
when run, you nust cause it, when started running for such

i nteractive use in the nost ordinary way, to print or display an
announcenent including an appropriate copyright notice and a
notice that there is no warranty (or el se, saying that you
provide a warranty) and that users may redistribute the program
under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Programitself is

i nteractive but does not normally print such an announcenent,
your work based on the Programis not required to print an
announcenent .)

These requirenents apply to the nodified work as a whole. |If

i dentifiable sections of that work are not derived fromthe Program
and can be reasonably consi dered i ndependent and separate works in

t hensel ves, then this License, and its terns, do not apply to those
sections when you distribute them as separate works. But when you
di stribute the sanme sections as part of a whole which is a work
based on the Program the distribution of the whole nust be on the
terms of this License, whose perm ssions for other |icensees extend
to the entire whole, and thus to each and every part regardl ess of
who wote it.

Thus, it is not the intent of this section to claimrights or
contest your rights to work witten entirely by you; rather, the
intent is to exercise the right to control the distribution of
derivative or collective works based on the Program

In addition, nmere aggregation of another work not based on the
Programwi th the Program (or with a work based on the Progran) on a
vol ume of a storage or distribution nedium does not bring the other
wor kK under the scope of this License.

3. You nmay copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable formunder the terns
of Sections 1 and 2 above provided that you al so do one of the

fol | ow ng:

a) Acconpany it with the conpl ete correspondi ng nmachi ne-readabl e
source code, which nust be distributed under the terns of
Sections 1 and 2 above on a nedium custonarily used for software
I nt erchange; or,

b) Acconpany it with a witten offer, valid for at |east three
years, to give any third party, for a charge no nore than your
cost of physically perform ng source distribution, a conplete
machi ne-r eadabl e copy of the correspondi ng source code, to be
di stributed under the ternms of Sections 1 and 2 above on a
medi um custonarily used for software interchange; or,

c) Acconpany it with the information you received as to the
offer to distribute correspondi ng source code. (This
alternative is allowed only for nonconmercial distribution and
only if you received the programin object code or executable
formw th such an offer, in accord with Subsection b above.)

The source code for a work neans the preferred formof the work for
maki ng nodifications to it. For an executable work, conplete source
code neans all the source code for all nodules it contains, plus any
associated interface definition files, plus the scripts used to
control conpilation and installation of the executable. However, as
a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form with the major conponents (conpiler, kernel, and so on) of the
operating systemon which the executable runs, unless that conponent
itsel f acconpani es the executabl e.

| f distribution of executable or object code is nade by offering
access to copy froma designated place, then offering equival ent
access to copy the source code fromthe sanme place counts as

di stribution of the source code, even though third parties are not
conpelled to copy the source along with the object code.

4. You may not copy, nodify, sublicense, or distribute the Program
except as expressly provided under this License. Any attenpt
ot herwi se to copy, nodify, sublicense or distribute the Programis
void, and wll automatically term nate your rights under this
Li cense. However, parties who have received copies, or rights, from
you under this License will not have their licenses term nated so

| ong as such parties remain in full conpliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you perm ssion to nodify or
distribute the Programor its derivative wirks. These actions are
prohibited by law if you do not accept this License. Therefore, by
nodi fying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or nodifying
t he Program or works based on it.

6. Each tine you redistribute the Program (or any work based on
the Program, the recipient automatically receives a |license from
the original licensor to copy, distribute or nodify the Program
subject to these terns and conditions. You may not inpose any
further restrictions on the recipients' exercise of the rights
granted herein. You are not responsible for enforcing conpliance by
third parties to this License.

7. I1f, as a consequence of a court judgnent or allegation of
patent infringenent or for any other reason (not limted to patent
| ssues), conditions are inposed on you (whether by court order,
agreenment or otherw se) that contradict the conditions of this
Li cense, they do not excuse you fromthe conditions of this License.
| f you cannot distribute so as to satisfy sinultaneously your
obligations under this License and any ot her pertinent obligations,
then as a consequence you may not distribute the Programat all.
For exanple, if a patent license would not permt royalty-free
redi stribution of the Programby all those who receive copies
directly or indirectly through you, then the only way you coul d
satisfy both it and this License would be to refrain entirely from
di stribution of the Program

If any portion of this section is held invalid or unenforceable
under any particular circunstance, the bal ance of the section is

i ntended to apply and the section as a whole is intended to apply in
ot her circunstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right clains or to contest validity of any
such clains; this section has the sol e purpose of protecting the
integrity of the free software distribution system which is

| npl emented by public license practices. Many peopl e have nade

generous contributions to the wide range of software distributed
t hrough that systemin reliance on consistent application of that
system it is up to the author/donor to decide if he or she is
willing to distribute software through any ot her system and a

| i censee cannot inpose that choice.

This section is intended to nake thoroughly clear what is believed
to be a consequence of the rest of this License.

8. If the distribution and/or use of the Programis restricted in
certain countries either by patents or by copyrighted interfaces,
t he original copyright hol der who places the Program under this
Li cense may add an explicit geographical distribution limtation
excl udi ng those countries, so that distributionis permtted only in
or anong countries not thus excluded. |In such case, this License
i ncorporates the limtation as if witten in the body of this
Li cense.

9. The Free Software Foundati on may publish revised and/ or new
versions of the CGeneral Public License fromtine to tine. Such new
versions will be simlar in spirit to the present version, but my
differ in detail to address new probl ens or concerns.

Each version is given a distinguishing version nunber. |If the
Program specifies a version nunber of this License which applies to
it and "any | ater version", you have the option of follow ng the
terms and conditions either of that version or of any later version
publ i shed by the Free Software Foundation. |f the Program does not
speci fy a version nunber of this License, you may choose any version
ever published by the Free Software Foundati on.

10. If you wish to incorporate parts of the Programinto other
free prograns whose distribution conditions are different, wite to
the author to ask for perm ssion. For software which is copyrighted
by the Free Software Foundation, wite to the Free Software
Foundati on; we sonetines nmake exceptions for this. Qur decision
wi |l be guided by the two goals of preserving the free status of all
derivatives of our free software and of pronoting the sharing and
reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM I S LI CENSED FREE OF CHARGE, THERE | S NO

WARRANTY FOR THE PROGRAM TO THE EXTENT PERM TTED BY APPL| CABLE LAW
EXCEPT WHEN OTHERW SE STATED I N WRI TI NG THE COPYRI GHT HOLDERS AND/ OR
OTHER PARTI ES PROVI DE THE PROGRAM "AS | S* W THOUT WARRANTY OF ANY

KI ND, ElI THER EXPRESSED OR | MPLI ED, | NCLUDI NG, BUT NOT LIM TED TG
THE | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A

PARTI CULAR PURPOSE. THE ENTI RE RI SK AS TO THE QUALI TY AND
PERFORVANCE OF THE PROGRAM IS WTH YOQU. SHOULD THE PROGRAM PROVE
DEFECTI VE, YOU ASSUME THE COST OF ALL NECESSARY SERVI CI NG REPAIR OR
CORRECTI ON.

12. I N NO EVENT UNLESS REQUI RED BY APPLI CABLE LAW OR AGREED TO I N
VRI TI NG W LL ANY COPYRI GHT HOLDER, OR ANY OTHER PARTY WHO MAY MODI FY
AND/ OR REDI STRI BUTE THE PROGRAM AS PERM TTED ABOVE, BE LI ABLE TO YQU
FOR DAMAGES, | NCLUDI NG ANY GENERAL, SPECI AL, | NCI DENTAL OR
CONSEQUENTI AL DAMAGES ARI SI NG QUT OF THE USE OR I NABI LI TY TO USE THE
PROGRAM (| NCLUDI NG BUT NOT LIM TED TO LOSS OF DATA OR DATA BEI NG
RENDERED | NACCURATE OR LOSSES SUSTAI NED BY YOU OR TH RD PARTIES OR A
FAI LURE OF THE PROGRAM TO OPERATE W TH ANY OTHER PROGRAMS), EVEN I F
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVI SED OF THE POSSI BI LI TY OF
SUCH DAMAGES.

END OF TERMS AND CONDI Tl ONS
How to Apply These Terns to Your New Prograns

| f you devel op a new program and you want it to be of the
great est possible use to the public, the best way to achieve this is
to make it free software which everyone can redi stribute and change
under these ternmns.

To do so, attach the following notices to the program It is
safest to attach themto the start of each source file to nost
effectively convey the exclusion of warranty; and each file shoul d
have at | east the "copyright” line and a pointer to where the full
notice is found.

<one line to give the programis nane and a brief idea of what it
does. >
Copyright (C) <year> <nane of author>

This programis free software; you can redistribute it and/or
nodify it under the terns of the GNU General Public License as
publ i shed by the Free Software Foundation; either version 2 of

the License, or (at your option) any |ater version.

This programis distributed in the hope that it wll be useful,
but W THOUT ANY WARRANTY; w thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
G\NU General Public License for nore details.

You shoul d have received a copy of the GNU General Public
License along with this program if not, wite to the Free
Sof tware Foundation, Inc., 59 Tenple Place, Suite 330, Boston,
MA 02111-1307 USA

Al so add information on how to contact you by el ectronic and paper
mai | .

If the programis interactive, nmake it output a short notice |like
this when it starts in an interactive node:

Gnonovi si on version 69, Copyright (C year nane of author
Gnonovi sion conmes with ABSCLUTELY NO WARRANTY; for details type

"showw . This is free software, and you are wel cone to
redistribute it under certain conditions; type show c' for
details.

The hypot heti cal commands ~show w and "show c¢' should show t he
appropriate parts of the General Public License. O course, the
commands you use may be call ed sonething other than show w and
"show c'; they could even be nouse-clicks or nenu itens--whatever
suits your program

You shoul d al so get your enployer (if you work as a progranmer) or
your school, if any, to sign a "copyright disclainer” for the
program if necessary. Here is a sanple; alter the nanes:

Yoyodyne, Inc., hereby disclains all copyright interest in the
program "~ Gnonovi si on' (which makes passes at conpilers) witten by
Janmes Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permt incorporating your

programinto proprietary prograns. |If your programis a subroutine
| ibrary, you may consider it nore useful to permt |inking
proprietary applications with the library. If this is what you want
to do, use the GNU Library General Public License instead of this

Li cense.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/

The Hackerlab at r egexps. com

Uh....a Little Help Here?

up: arch Meets hello-world
next: Indexes
prev: The GNU General Public License

ar ch isaCommunity Supported Free Software Project -- | rely on the financial support of the
community to be able to develop ar ch and the other free software projects that | work on.

If you are able to help out, even just alittle, please do so. I'm able to accept contributions as

| or d@nf . net on Paypal. Arrangements can be made to accept contributions larger than afew 10s of
dollars as a tax-deductible contribution to a non-profit organization (contact me if you would like to do
this.)

Finally, if you represent a business or non-profit organization, | offer a Release Subscription Service -- a
formally invoiced mechanism, suitable for corporate purchasing practices, for contributing and gaining
recognition in my eyes as a true customer for my development work. (Again, please contact meif thisis
of interest to you.)

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/
http://www.regexps.com/

The Hackerlab at r egexps. com

Indexes

up: arch Meets hello-world
prev: Uh....aLittle Help Here?

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at r egexps. com

http://www.regexps.com/
http://www.regexps.com/

	Local Disk
	arch Meets hello-world
	Introducing arch
	System Requirements
	arch Commands in General
	Introducing Yourself to arch
	Creating a New Archive
	Starting a New Project
	Starting a New Source Tree
	Project Tree Inventories
	Inventory Ids for Source
	Importing the First Revision
	Checking-in Changes
	Retrieving Earlier Revisions
	Shared and Public Archives
	The update/commit Style of Cooperation
	Introducing Changesets
	Exploring Changesets
	Introducing replay -- An Alternative to update
	Selected Files Commit
	Elementary Branches -- Maintaining Private Changes
	Patch Logs and Project Tree History
	Development Branches -- The star-merge Style of Cooperation
	Symbolic Tags
	Cherrypicking Changes
	Multi-tree Projects and Configuration Management
	Revision Library Basics
	Advanced Revision Library Use
	Driving Process Automation with arch Hooks
	Speeding up arch by Caching Revisions in Archives
	The arch Changeset Format
	Customizing the inventory Naming Conventions
	The GNU General Public License
	Uh....a Little Help Here?
	Indexes

