
arch Meets hello-world
A Tutorial Introduction to The arch Revision Control System

visit the Hackerlab at www.regexps.com

by
Thomas Lord

Contents

● Introducing arch
● System Requirements
● arch Commands in General
● Introducing Yourself to arch
● Creating a New Archive
● Starting a New Project
● Starting a New Source Tree
● Project Tree Inventories
● Inventory Ids for Source
● Importing the First Revision
● Checking-in Changes
● Retrieving Earlier Revisions
● Shared and Public Archives
● The update/commit Style of Cooperation
● Introducing Changesets
● Exploring Changesets
● Introducing replay -- An Alternative to update
● Selected Files Commit
● Elementary Branches -- Maintaining Private Changes
● Patch Logs and Project Tree History
● Development Branches -- The star-merge Style of Cooperation
● Symbolic Tags

● Cherrypicking Changes
● Multi-tree Projects and Configuration Management
● Revision Library Basics
● Advanced Revision Library Use
● Driving Process Automation with arch Hooks
● Speeding up arch by Caching Revisions in Archives
● The arch Changeset Format
● Customizing the inventory Naming Conventions
● The GNU General Public License
● Uh....a Little Help Here?
● Indexes

Copyright (C) 2001, 2002, 2003 Thomas Lord

This manual is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This manual is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License (enclosed) for more details.

You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA

The Hackerlab at regexps.com

Introducing arch

up: arch Meets hello-world
next: System Requirements

arch is a revision control, source code management, and configuration management tool.

This manual is an arch tutorial: its purpose is to help you get started using arch for the first time, and
then learn some of the more advanced features of arch.

Who is this Manual For?

In order to use this manual, you should be familiar with the basic unix command line tools (such as ls ,
mv , and find).

In addition, you should be familiar with the programs diff and patch and the concept of a
patchset .

It is very helpful, but not strictly necessary if you have used or are at least familiar with other revision
control systems such as CVS .

Where's the Reference Manual?

arch is largely a self documenting program. The command:

 % tla help

will provide you with a categorized list of all available commands, and for a given command foo ,

 % tla foo -H

will provide you with documentation for that command.

Another Source of Help -- the Mailing List

Arch is sufficiently different from older and competing systems that new users are often a bit disoriented

http://www.regexps.com/

for the first few days. You may find it helpful to seek help on the gnu-arch-users mailing list
which you can find via links from:

 http://www.gnu.org/software/gnu-arch

What is Revision Control?

A "revision control system" is a librarian and coordination tool for trees of files and the changes made to
them. For example, a typical software project uses revision control to keep track of how the project's
source code evolves over time, to keep track of each change to that code (such as each bug fix or feature
addition), to share those changes among all the programmers working on the project and help them
remain in sync, and to combine changes made at different times and/or by different programmers into a
single source tree.

A "source management tool" is one that helps you to manage large source trees even if they have many
more files that you can keep track of "by hand". For example, a source management tool can inventory
the source files in a tree, distinguish the source files from scratch files and and other files that maybe
stored there, and inform you when source files are added and deleted.

"Configuration Management" addresses the needs of projects which combine multiple, separately
maintained source trees into a single tree. A configuration management tool helps you to easily construct
the combined project and to keep track of how development on the component parts is synchronized.

Why Use arch?

arch has a number of advantages compared to competing systems. Among these are:

Works on Whole Trees arch keeps track of whole trees -- not just individual files. For example, if you
change many files in a tree, arch can record all of those changes as a group rather than file-by-file; if
you rename files or reorganize a tree, arch can record those tree arrangements along with your changes
to file contents.

Changeset Oriented arch doesn't simply "snapshot" your project trees. Instead, arch associates each
revision with a particular changeset: a description of exactly what has changed. arch provides
changeset oriented commands to help you review changesets, merge trees by applying changesets,
examine the history of a tree by asking what changesets have been applied to it, and so forth.

Fully Distributed arch doesn't rely on a central repository . For example, there is no need to give
write access to a project's archive to all significant contributors, instead, each contributor can have their
own archive for their work. arch seamlessly operates across archive boundaries.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

System Requirements

up: arch Meets hello-world
next: arch Commands in General
prev: Introducing arch

In order to use arch , there are some software tools that you must already have available.

Tools Used to Build arch

GNU Make You will need GNU Make in order to build arch .

Standard Posix Shell Tools The package framework (i.e., the configure and build process) assumes that
some standard Posix shell tools are available on your system:

 awk find mkdir sh wc
 cat fold printf tee xargs
 chmod grep pwd test
 date head rm touch
 echo ls sed tsort

Note: On some systems, the program installed as /bin/sh is not a Posix shell (it may be a variant of
csh or a very buggy implementation of Posix sh). On such systems, you should use a different shell to
run configure , such as:

 % /usr/local/bin/bash ../configure --config-shell /usr/local/bin/
bash

The null Device Your system must have /dev/null . Information directed to /dev/null should
simply disappear from the universe. As a special "Green Software" measure, we have made provisions
that will enable your computers to convert that discarded information into heat, which you may use to
supplement conventional heating systems.

Tools Used Internally by arch

The remaining tools are used internally by arch itself. They don't necessarily need to be on your PATH --
when you build arch from source, run the configure script:

http://www.regexps.com/

 % ./configure --help

and

 % ./configure --help-options

for information about how to point arch to the correct versions.

GNU Tar You must have GNU tar . arch invokes tar internally to pack and unpack files that it
stores in archives. It is important that all versions of arch use a compatible version of tar , for which
purpose GNU tar was chosen.

GNU diff and GNU patch After much deliberation, I've decided to go ahead and rely on the GNU
versions of diff and patch . Specifically, you need a version of diff that can generate "unified
format" output (option -u) and a version of patch that understands that format and that understands
--posix . (It would be trivial to use "context diffs" and, thus, standard diff and patch , however,
unified diffs are much easier to read, and I'm hoping that picking specific implementations of these
critical sub-components will help contribute to the long-term stability of arch .)

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

arch Commands in General

up: arch Meets hello-world
next: Introducing Yourself to arch
prev: System Requirements

Every command in arch is accessed via the program tla , using an ordinary sub-command syntax:

 % tla <sub-command> <options> <parameters>

A list of sub-commands can be obtained from:

 % tla help

A brief summary of the options to any command is given by:

 % tla <sub-command> -h

A more detailed help message for each command is given by:

 % tla <sub-command> -H

For example, try:

 % tla my-id -H
 print or change your id
 usage: tla my-id [options] [id]

 -h, --help Display a help message and exit.
 -H Display a verbose help message and exit.
 -V, --version Display a release identifier string
 and exit.
 -e, --errname specify program name for errors
 -u, --uid print only the UID portion of the ID

http://www.regexps.com/

 With no argument print your arch id.

 With an argument, record ID-STRING as your id
 in ~/.arch-params/=id

 Your id is recorded in various archives and log messages
 as you use arch. It must consist entirely of printable
 characters and fit on one line. By convention, it should
 have the form of an email address, as in this example:

 Jane Hacker <jane.hacker@gnu.org>

 The portion of an id string between < and > is called your
 uid. arch sometimes uses your uid as a fragment when
generating
 unique file names.

 The option -u (--uid) causes only the uid part of your id
string
 to be printed.

There is a great deal of regularity among commands regarding option names and parameter syntax.
Hopefully, you'll pick this up as you learn the various commands.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Introducing Yourself to arch

up: arch Meets hello-world
next: Creating a New Archive
prev: arch Commands in General

The first step to using arch is to set your id with a command like:

 % tla my-id "Tom Lord <lord@emf.net>"

Your id should be your name, followed by your email address in angle brackets.

arch records your id in various log messages that it creates.

You can find out your id with:

 % tla my-id
 Tom Lord <lord@emf.net>

How it Works -- Your arch Id

After the command above, you will have some new files in your home directory:

 % ls ~/.arch-params
 =id

 % cat ~/.arch-params/=id
 Tom Lord <lord@emf.net>

Caution: You usually should not edit files in ~/.arch-params/ "by hand."

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/
http://www.regexps.com/

The Hackerlab at regexps.com

Creating a New Archive

up: arch Meets hello-world
next: Starting a New Project
prev: Introducing Yourself to arch

An archive is a dedicated directory which arch uses to hold a library of your project trees and
changesets. This chapter shows you how to create a new archive.

Choose a Location

You need to decide where to store your archive: where to create the directory that will contain the
archive.

Usage Advice: It is likely that you'll eventually want to have more than one archive. Therefore, it is a
good idea to create a directory of archives.

In the examples that follow, we'll be creating an archive as a subdirectory of ~/{archives} , a
directory of archives.

 # Create a directory in which to store archives:
 #
 % mkdir ~/{archives}

Choose an Archive Name

Next, you need to choose a name for your archive. An archive name consists of an email address,
followed by two dashes (--), followed by a suffix. By convention, the email address should be that of
the archive owner.

In the example, we'll use the name:

 lord@emf.net--2003-example

Usage Advice: If you use a single archive for a very long time it will eventually accumulate a very large
amount of data and thus start to become inconvenient to work with. Because arch seamlessly operates
across archive boundaries, there is no need to keep everything in just one archive. It's a good idea to plan

http://www.regexps.com/

to divide up your archives by time and that suggests that you include a date in the archive name. In the
example above, the archive is labeled 2003 : a year later, we could create lord@emf.net--2004-
example and continue the project in that new archive. The 2003 archive will still exist at that point --
we'll just stop adding new data to it.

Usage Advice: You should plan on having multiple archives, and therefore choose archive names that
distinguish them. The suffix -example above tells us that this archive is being created just work
through the examples in this tutorial.

Create the Archive

To create a new archive, use the make-archive command, telling it the archive name and archive
location:

 # Create the new archive
 #
 % tla make-archive lord@emf.net--2003-example \
 ~/{archives}/2003-example

Make this Your Default Archive

To save yourself from having to type the archive name to every future command, declare that your new
archive is your default choice:

 # Choose a default archive
 #
 % tla my-default-archive lord@emf.net--2003-example

Your current default is reported by:

 % tla my-default-archive
 lord@emf.net--2003-example

And you can cancel the default setting with:

 % tla my-default-archive -d
 user default archive removed

(If you experiment with -d , be sure to re-establish your default archive so that you can continue to
follow the examples.)

How it Works -- New Archives

Let's examine what that command did.

First, tla now knows about the new archive:

 # What archives does `tla' know about?
 #
 % tla archives
 lord@emf.net--2003-example
 /home/lord/{archives}/2003-example

 % tla whereis-archive lord@emf.net--2003-example
 /home/lord/{archives}/2003-example

 # Where is that data stored?
 #
 % ls ~/.arch-params
 =default-archive =id =locations

 % cat ~/.arch-params/=default-archive
 lord@emf.net--2003-example

 % ls ~/.arch-params/=locations
 lord@emf.net--2003-example

 % cat ~/.arch-params/=locations/lord@emf.net--2003-example
 /home/lord/{archives}/2003-example

Next, the archive directory has been created and contains a few files:

 % ls ~/{archives}
 2003-example

 % ls -a ~/{archives}/2003-example
 . .archive-version
 .. =meta-info

 % cat ~/{archives}/2003-example/.archive-version
 Hackerlab arch archive directory, format version 2.

 % ls -a ~/{archives}/2003-example/=meta-info/
 . .. name

 % cat ~/{archives}/2003-example/=meta-info/name
 lord@emf.net--2003-example

Caution: You usually should not edit files in ~/.arch-params/ or files in an archive "by hand."

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Starting a New Project

up: arch Meets hello-world
next: Starting a New Source Tree
prev: Creating a New Archive

This and later chapters will show you how to set up and manage a simple project with arch through the
specific example of a hello world program.

Choose a Project Category

As a first step, you must choose a general category to serve as a name for the project. In the examples,
we'll use the name:

 hello-world

Choose a Project Branch

arch encourages you to divide up the work on a project into separate branches .

Roughly speaking, branches are a mechanism for splitting the work on a project into two or more,
largely independent efforts. Let's suppose, for example, that the hello-world project has two needs:

1) A need to make regular releases of good ol' fashioned hello-world , fixing simple bugs, porting
the program, and adding tiny features.

2) A need to begin work on a graphical user interface for hello-world, which is expected to take
about a year to complete.

We'd like those two efforts to proceed in parallel, but not get in each other's way. For example, we don't
want GUI code to appear in the regular releases until it is working fairly well.

In such a case, we'll use branches: one for regular releases (the mainline branch) and another for GUI
features (the gui branch).

There are many other uses for branches, some of which will be described later in the manual. For now,
we just need one branch: a branch for the official latest sources of hello-world , which we'll call:

http://www.regexps.com/

 hello-world--mainline
 ^^^^^^^^^^^ ^^^^^^^^
 | |
 | branch name
 category name

Notice that the category and branch names are separated by two dashes. In general, category and branch
names must: consist only of letters, numbers, and dashes; must begin with a letter; must not themselves
contain two dashes; and must not end with a dash.

Choose a Version Number

Finally, you must choose a version number for the version of hello-world that you'll be working on,
and create that version in the archive.

Version numbers in arch are not the name of a particular "snapshot" or release of your project --
though they are related to that concept. Instead, version numbers are the name of a development line : a
sequence of changes that you make while creating a particular release.

In this case, we'll use the name:

 hello-world--mainline--0.1
 ^^^
 |
 version number

Notice that version numbers are always positive integers, separated by periods.

Preparing the Archive

Having chosen a name, it's time to prepare the archive for use of that name:

 % tla archive-setup hello-world--mainline--0.1

After that command, we can query the archive to see what we've done:

 % tla categories
 hello-world

 % tla branches hello-world
 hello-world--mainline

 % tla versions hello-world--mainline
 hello-world--mainline--0.1

Why is it Like This

People new to arch are sometimes startled at the rigidity of its archive namespace. Two most common
question is:

Why have categories, branches and versions? Why can't I just name my projects with arbitrary
string? These questions are best answered by recalling that a revision control system is a librarian. Part
of its job is to help people navigate and search through very large collections of projects and source
code. In order to make such searching practical, arch defines a cataloging system: categories, branches,
and versions. (See What is Revision Control?.)

This is somewhat analogous to the cataloging systems used in libraries for books, such as the Dewey
decimal classification system: it's a hierarchical categorization of everything in the library. It's a uniform
way to describe where a given item is stored, and it aids searching by suggesting the relationships
between various items. For example, a branch is likely most closely related to other branches in the same
category. A version with a higher major version number most likely contains later work than one in the
same branch with a lower major version number.

The analogy isn't perfect: book cataloging systems such as Dewey are based on an official list of
categories and subcategories, while arch , on the other hand, let's you choose your own category
names. Still, like Dewey, arch names are based on the idea of grouping related items together to make
them easier to search and navigate. And just as Dewey is intended to capture the most common patterns
of how people search through books, arch is intended to capture the most common patterns of how
people search through source archives.

How it Works -- Creating Categories, Branches, and Versions

What does the command archive-setup actually do? It s conceptually quite simple: it
creates new directories in your archive:

 % tla whereis-archive lord@emf.net--2003-example
 /home/lord/{archives}/2003-example

 % cd `tla whereis-archive lord@emf.net--2003-example`

Categories are top level directories:

 % ls
 =meta-info hello-world

Branches the next level:

 % ls hello-world
 hello-world--mainline

Versions the third:

 % ls hello-world/hello-world--mainline
 hello-world--mainline--0.1

Versions are themselves directories:

 % ls hello-world/hello-world--mainline/hello-world--mainline--
0.1/
 +revision-lock +version-lock

Note: The lock files (e.g. +revision-lock) are used internally by arch. When adding new data to
an archive, arch doesn't simply call mkdir . Instead, it carefully modifies archives to that they are
always in a consistent state, regardless of what commands are issued concurrently, or whether or not a
command is killed in mid-execution.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Starting a New Source Tree

up: arch Meets hello-world
next: Project Tree Inventories
prev: Starting a New Project

After following the examples in earlier chapters, you should have a new archive and new hello-
world project within that archive.

In this chapter, we'll walk through the steps of preparing a source tree to be part of that project.

The Intial Source

For the sake of example, let's assume that we have an initial, slightly buggy, implementation of hello-
world :

 % cd ~/wd

 % ls
 hello-world

 % cd hello-world

 % ls
 hw.c main.c

 % cat hw.c

 #include <stdio.h>

 void
 hello_world (void)
 {
 (void)printf ("hello warld");
 }

 % cat main.c

 extern void hello_world (void);

http://www.regexps.com/

 int
 main (int argc, char * argv[])
 {
 hello_world ();
 return 0;
 }

Initializing a Project Tree

The first step of preparing source is to turn the ordinary source tree into a project tree :

 % cd ~/wd/hello-world

 % tla init-tree hello-world--mainline--0.1

 % ls
 hw.c main.c {arch}

Note that we passed init-tree the name of the version in the archive that we'll be working on.
init-tree created a new subdirectory in the root of the tree ({arch}).

The {arch} subdirectory indicates that this is the root of a project tree:

 % tla tree-root
 /usr/lord/wd/hello-world

tla knows what archive version this tree is for:

 % tla tree-version
 lord@emf.net--2003-example/hello-world--mainline--0.1

Finally, arch has created something called a patch log for the version passed to init-tree :

 % tla log-versions
 lord@emf.net--2003-example/hello-world--mainline--0.1

We'll explain what patch logs are for in later chapters.

Initializing a Tree Does Not Change an Archive

So far, we've only marked the project tree as source: we haven't yet stored anything new in the archive.
We'll get there, but before we do that, there's an important topic to cover first: source inventories. We'll
cover that in the next chapter.

What if You Make a Mistake With init-tree?

Suppose that in the example above, we had mis-typed:

 % tla init-tree hello-world--mainlin--0.1

One "brute force" solution is just to delete the {arch} subdirectory and start over. Later on, though,
that solution is undesirable: the {arch} subdirectory may contain some data you don't want to delete.
So, we'll take this opportunity to introduce a few more advanced commands.

There are two problems after the bogus call to init-tree . The output from both of these commands
is not what we want:

 % tla tree-version
 lord@emf.net--2003-example/hello-world--mainlin--0.1

 % tla log-versions
 lord@emf.net--2003-example/hello-world--mainlin--0.1

We can change the tree-version of a tree at any time:

 % tla set-tree-version hello-world--mainline--0.1

 % tla tree-version
 lord@emf.net--2003-example/hello-world--mainline--0.1

Patch logs are a little trickier. We have to delete the logs we don't want, and add those that we do want:

 % tla add-log-version hello-world--mainline--0.1

 % tla log-versions
 lord@emf.net--2003-example/hello-world--mainlin--0.1
 lord@emf.net--2003-example/hello-world--mainline--0.1

 % tla remove-log-version hello-world--mainlin--0.1

 % tla log-versions
 lord@emf.net--2003-example/hello-world--mainline--0.1

WARNING: remove-log-version is a dangerous command: it will remove patch logs that you
might need if you ask it to. You should only use remove-log-version when you are certain, as we
were above, that what is being removed is one you do not want.

How it Works -- Initializing a New Tree

init-tree created the {arch} subdirectory at the root of the source tree. What's in there?

 % ls {arch}
 ++default-version =tagging-method hello-world

 % cat {arch}/++default-version
 lord@emf.net--2003-example/hello-world--mainline--0.1

 % cat {arch}/=tagging-method
 [... long output ...]

{arch}/hello-world is the root of a fairly deep tree. Patch logs are stored within that tree.

{arch}/=tagging-method is a configuration file that you can use to customize the naming
conventions that apply to this tree. It is explained in a later chapter (see Customizing the inventory
Naming Conventions).

Note: You should not, of course, edit the contents of the {arch} directory by hand.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Project Tree Inventories

up: arch Meets hello-world
next: Inventory Ids for Source
prev: Starting a New Source Tree

Caution: Steep Learning Curve: The concepts and commands introduced in this chapter are likely to
be unfamiliar to you, even if you have used other revision control systems. They're really quite simple
once you get over the initial learning hurdle -- and after that they're very useful.

The Name-based inventory Concept

In a project tree, some of the files and directories are "part of the source" -- they are of interest to arch .
Other files and directories may be scratch files, editor back-up files, and temporary or intermediate files
generated by programs. Those other files should be ignored or treated specially by most arch
commands.

This chapter discusses how arch recognizes which files to pay attention to, and which to ignore.

● The Name-based inventory Concept
● The inventory Command
● The arch Naming Conventions
● Naming Conventions Illustrated
● Customizing the Naming Conventions
● Why is It Like This -- inventory Naming Conventions

The inventory Command

up: Project Tree Inventories
next: The arch Naming Conventions
prev: The Name-based inventory Concept

The command tla inventory --names --source is used to print a list of source files as
determined by the naming conventions. It has many options, including options to print other kinds of file

http://www.regexps.com/

lists (such as a list of all editor backup files, or a list of all files which are not source).

Let's suppose that after some editing, our source tree looks like this:

 % ls
 hw.c hw.c.~1~ main.c {arch}

The file hw.c.~1~ is an editor backup file. tla knows that and omits that file from the source
inventory:

 % tla inventory --names --source
 ./hw.c
 ./main.c

tla can give you other lists besides lists of source:

 % tla inventory --names --backups
 ./hw.c.~1~

The arch Naming Conventions

up: Project Tree Inventories
next: Naming Conventions Illustrated
prev: The inventory Command

This section describes the default naming conventions used by arch to pick out source files from other
kinds of files. A later chapter describes how to customize these conventions for a partiuclar tree (see
Customizing the inventory Naming Conventions).

The naming conventions are based on several categories of files:

 . and .. These are simply ignored by arch

 excluded Excluded files are normally omitted
 from a listing, but if the `--all'

 flag is passed to `inventory',
 then these files are put into
 one of the categories below and
 included in the listing.

 source These are apparent source files

 precious These are non-source files that
 should not be automatically deleted

 junk These are non-source files that
 may be automatically deleted

 backups These are non-source files that
 may be automatically deleted, but
 any program that deletes them should
 treat them as editor backup files
 (e.g., keep the oldest and newest
 of them)

 unrecognized These are files that arch doesn't
 know how to classify -- they fit
 none of the naming conventions or
 that have names that appear to
 be "suspicious".

The algorithm for classifying files by name has several rules. For each file name, each of these rules is
checked in the order listed here until the first rule is reached that classifies the file.

Exclude Dot Files The special files . and .. are always excluded from inventory listings.

Non-portable Names are Unrecognized File names containing whitespace, non-printing characters, or
a "globbing character" are always classified as unrecognized . The globbing characters are:

 ? [] * \

Excluded File Test If the --all flag is not given to inventory , the file names matching the pattern
for excluded files are dropped from the listing. If the name of a directory is excluded, the entire contents
of that directory are skipped. By default, the pattern for excluded files matches control files created by

arch itself:

 ^(.arch-ids|\{arch\})$

Junk File Test All file names reaching this step that begin with two commas (,,) are classified as
junk . Temporary files created by arch itself begin with two commas. In addition, any file name
matching the junk pattern are classified by junk . By default, that pattern matches any name beginning
with (at least) one comma:

 ^,.*$

Incidentally, that default pattern gives rise to a handy trick. If you need to create a scratch file in a
source tree, give it a name that begins with a single comma.

Backup File Test By default, a backup file is any file that reaches this step and matches one of the
patterns:

 ^.*(~|\.~[0-9]+~)$
 ^.*\.bak|\.orig|\.rej|\.original|\.modified|\.reject)$

Precious File Test By default, a precious file is any that reaches this step and matches one of the
patterns:

 ^\+.*$
 ^(\.gdbinit|\.#ckpts-lock)$
 ^(=build\.*|=install\.*)$
 ^(CVS|CVS\.adm|RCS|RCSLOG|SCCS|TAGS)$

Suspicious File Test (Unrecognized) Some file names reaching this step are explicitly treated as
unrecognized on the presumption that they should probably not be present in a source tree. By
default, names ending with any of these extensions are treated as unrecognized :

 .o
 .a
 .so
 .core

In addition, the filename core is (by default) treated as unrecognized).

Source File Test Files reaching this step are compared to the pattern for source files. The default pattern
is shown below. You should note that this pattern overlaps that for excluded files given above. If the
--all flag is given to inventory, the excluded pattern isn't used, and files that would match it
instead "fall through" to later steps of this algorithm.

 ^([_=a-zA-Z0-9].*|\.arch-ids|\{arch\}|\.arch-project-tree)$

In other words, by default, the arch control files and directories are source (if not excluded). Files
beginning with letters, numbers, underscore, or an equal sign are source.

Unrecognized Files Any left-over file name reaching this step is treated as unrecognized .

Naming Conventions Illustrated

up: Project Tree Inventories
next: Customizing the Naming Conventions
prev: The arch Naming Conventions

Using our example, we can illustrate some of the naming conventions.

Recall that our project tree looks like this:

 % ls
 hw.c hw.c.~1~ main.c {arch}

So the ordinary source listing is:

 % tla inventory --names --source
 ./hw.c
 ./main.c

And all of the source files (none excluded from the list) is:

 % tla inventory --names --source --all

 ./hw.c
 ./main.c
 ./{arch}/.arch-project-tree
 ./{arch}/=tagging-method

We can include directories in this listing:

 % tla inventory --names --source --all --both
 ./hw.c
 ./main.c
 ./{arch}
 ./{arch}/.arch-project-tree
 ./{arch}/=tagging-method
 ./{arch}/hello-world
 ./{arch}/hello-world/hello-world--mainline
 [... output trimmed ...]

We can also look at some lists of non-source files:

 % tla inventory --names --backups
 ./hw.c.~1~

The inventory command has many options that you may wish to explore.

Customizing the Naming Conventions

up: Project Tree Inventories
next: Why is It Like This -- inventory Naming Conventions
prev: Naming Conventions Illustrated

You can alter the patterns used by inventory to classify files. This is explained in a later chapter (see
Customizing the inventory Naming Conventions).

Why is It Like This -- inventory Naming Conventions

up: Project Tree Inventories
prev: Customizing the Naming Conventions

Many systems provide naming conventions for recognizing source files but users new to arch often
wonder why arch needs so many categories of files. Recall that arch has the categories:

 excluded
 source
 precious
 junk
 backups
 unrecognized

A rationale for each category is explained here:

excluded is provided simply to keep inventory listings brief in the very common case that arch control
files are of no particular interest. This is similar to the treatment of "dot files" by ls and the --all flag
to inventory is similar to the -a flag to ls .

source is provides simply so that arch can reliably distinguish those files from others. For example,
when comparing two source trees, arch compares only the files in the category source .

precious files are those that arch should make an effort to preserve. For example, if arch needs to
make a copy of a project tree for you, it copies the precious files along with the source . Suppose,
for example, that you are taking notes while working on source. You don't want your file of notes to be
mistaken for source, but you also don't want them to be lost. A useful trick is to give the file a
precious name (e.g. +notes).

junk Often when working on a project tree, it's convenient to create "throw-away" files. You might want
to compile a quick test program or save, for the moment, the output of some command. When enough of
these throw-away files have accumulated, it's handy to be able to get rid of them all-at-once, without
having to carefully identify which files to toss, and which to keep. junk names are perfect for this.
When you create one of these throw-away files, give it name like ,foo . Later, you can feel confident
and safe issuing commands like:

 % rm ,*

 % find . -name ',*' | xargs rm

 % tla inventory --junk | xargs rm

From arch's perspective, junk files have two important properties. First, when copying a tree, the junk
files are not copied. Second, it is considered safe for arch to overwrite a junk file. In practice, arch will
only ever actually overwrite a junk file if that junk file has a name that begins with ,, .

backups Editor backup files and the backup files created by programs like patch often deserve special
treatment. For example, if your editor creates "numbered backups", those are almost junk files, but
rather than deleting all of them, you might want to delete only some of them.

For arch, what is important is that when copying a tree, backup files should not also be copied. For
users, what is hopefully most useful is that using the trick:

 % tla inventory --junk | xargs rm

will not delete backup files.

unrecognized The appearance in a source tree of a file that doesn't fit any known pattern (or that has a
suspicious name) most likely indicates that something has gone wrong. Rather than silently ignoring
such files or treating them as precious or junk , arch explicitly flags these exceptions in order to
be able to give warnings to users.

Overall, adopting file naming conventions is a discipline that many programmers may not be
accustomed to, but it's one I strongly recommend. It's easy to stick to these conventions and tools like
inventory and tree-lint (introduced later) help you to keep your source from get out of control.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Inventory Ids for Source

up: arch Meets hello-world
next: Importing the First Revision
prev: Project Tree Inventories

Caution: Steep Learning Curve: As in the previous chapter, the concepts and commands introduced
here are likely to be unfamiliar to you, even if you have used other revision control systems. Once you
"get it", though, this will seem quite natural. Best of all, this is the last tricky step before we can start
storing project trees in an archive.

Looks Like Source vs Really is Source

In the previous chapter, we saw how to find out which files look like source according to the naming
conventions:

 % tla inventory --names --source
 hw.c
 main.c

In this chapter, there's a new distincition: files which look like source according to their names, vs. files
which really are source.

When you save your project tree in an archive, arch will store the files that really are source and ignore
the rest. We can ask which files really are source by dropping the --names option to inventory :

 % tla inventory --source
 [no output]

It's a little more interesting if we include arch's own "system files and directories" in the listing:

 % tla inventory --source --all --both
 {arch}
 {arch}/.arch-project-tree
 {arch}/=tagging-method
 {arch}/hello-world
 [....]

http://www.regexps.com/

but the thing to note here is that hw.c and main.c aren't listed. Arch thinks they are source in name
only. The next section gives a recipe to fix that, and the sections after that explain what's really going on.

The add Command

We can tell arch that our files really are source, and should really be archived with the project, using the
tla add command:

 % tla add hw.c
 % tla add main.c

And now we get a better answer from:

 % tla inventory --source
 hw.c
 main.c

A related command is tla delete :

 % tla delete hw.c

That doesn't delete the file hw.c itself:

 % ls
 hw.c hw.c.~1~ main.c {arch}

but it does remove it from the official list of source:

 % tla inventory --source
 main.c

For the sake of the examples, we need to put hw.c back in the list:

 % tla add hw.c

 % tla inventory --source
 hw.c
 main.c

Let's take a deeper look at what's going on when you tla add files:

Two Names for Every File

In the arch world, every source file (and directory) in your project tree has two names: a file path and a
inventory id .

The file path of a file is the relative path to the file from the root of the project tree. It describes where
within a source tree a file is located.

The inventory id of a file is a (mostly) arbitrary string that is unique to the file within the tree. The
inventory id remains constant even if a file is renamed. So while the file path says where a file is
located, the inventory id says which file it is that's stored at that path.

The purpose of tla add is to assign an inventory id to a file.

In our example, we can examine the ids:

 % tla inventory --source --ids
 hw.c x_very_long_string
 main.c x_another_very_long_string
 ^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^
 | |
 | inventory ids
 file paths

Ordinarily, when a file is moved, its file path changes, but its inventory id should remain the same. The
tla move command helps with this. Suppose that we:

 % mv hw.c hello.c

we should follow that with:

 % tla move hw.c hello.c

after which:

 % tla inventory --source --ids
 hello.c x_very_long_string
 main.c x_another_very_long_string

Note that hello.c has the same inventory id that hw.c used to.

We'll come back to the topic of renames later so, for now, let's put things back where they started:

 % mv hello.c hw.c
 % tla move hello.c hw.c

Quick Aside -- Adding Directories

The tla add command applies to directories, too. If we were to create a new subdirectory in the tree,
we should tla add it:

 % mkdir docs

 % tla inventory --names --source --both
 docs
 hw.c
 hello.c

but

 % tla inventory --source --both
 hw.c
 hello.c

unless

 % tla add docs

and then

 % tla inventory --source --both
 docs
 hw.c
 hello.c

But again, for the sake of our example, we don't need docs. We can just:

 % rm -rf docs

There isn't a need to tla delete a directory that we physically remove.

How it Works -- tla add

What tla add does is fairly simple. Note that when we added hw.c and main.c , a new directory
was created:

 % ls -a
 . .arch-ids hw.c.~1~ {arch}
 .. hw.c main.c

The .arch-ids directory is new:

 % ls .arch-ids
 hw.c.id main.c.id

 % cat .arch-ids/hw.c.id
 very long string

The *.id files is where the raw data that determines a file id are stored. The command tla delete
removes those files. The command tla move renames them.

The id for a directory is stored slightly differently. For example, when we created a docs subdir and
gave it an id with tla add , that created a file docs/.arch-ids/=id .

Keeping Things Neat and Tidy

The command:

 % tla tree-lint

is useful for keeping things neat and tidy.

tree-lint will tell you of any ids for which the corresponding file does not exist. It will tell you of
any files that pass the naming conventions, but for which no explicit id exists.

It will also warn you about files that don't fit the naming conventions.

Inventory Ids -- There's More Than One Way to Do It

In this chapter, you've learned about the basic commands add , move , and delete .

The use of those tools for managing inventory ids was chosen as the default behavior because,
superficially at least, it resembles similar commands in systems such as CVS which many users are
already familiar with.

There are other ways to manage inventory ids. Sometimes the other ways are more convenient. A later
chapter discusses these other techniques (see: xref : !!!).

Why is it Like This -- The Purpose of Inventory Ids

As you'll see in later chapters, arch is good at managing changes made to source trees and the files
they contain, and good at telling you about the history of trees and files.

As an example, let's suppose that Alice and Bob are both working on the hello_world project. In her
tree, Alice makes some changes to hw.c . In his tree, Bob renames hw.c to hello.c .

At some point it is necessary to "sync-up" Alice and Bob. Bob should wind up with the changes Alice
has been making. Alice should wind up with the same file renaming that Bob has done.

arch provides many mechanisms for that syncing up -- it's one of the most important things that arch
can do -- but nearly all of them boil down to computing and applying changesets.

Alice can ask arch to create a changeset describing the work she's done, and that changeset will
describe the changes she made within hw.c . Bob can create a changeset and that changeset will
describe the file renaming he did.

If Alice applies Bob's changeset to her tree, her copy of hw.c should be renamed hello.c . But a
trickier case is this: What happens if Bob applies Alice's changeset to his tree?

Alice changed a file named ./hw.c , but in Bob's tree, those same changes should be made to a file
named ./hello.c . Fortunately, both files have the same inventory id:

 file path inventory id
 --------- -------------

 Alice's tree:
 ./hw.c x_very_long_string
 \
 - the same long
string
 Bob's tree: /
 ./hello.c x_very_long_string

In Alice's changeset, the changes Alice made are described as being made to the file whose id is
x_very_long_string .

Therefore, when applying that changeset to Bob's tree, arch knows to apply the changes to the file with
that same id; it knows to apply the changes to his ./hello.c .

That example illustrates what inventory ids are for: they allow arch to describe the changes made to a
tree in terms of the logical identity of files rather than their physical location. There are many more
complicated examples of how inventory ids come into play, but now you've seen at least the basic point.

Why is it Like This -- Why tla move Doesn't Move Files

Why doesn't tla delete delete the file being removed from the source category, or tla move
rename it?

Those commands work as they do so that you can adjust the ids in a tree even if some other tool which
knows nothing about arch has rearranged files. For example, if you use a "directory editor" to rename

source files, tla move is available to catch-up to the changes the directory editor made.

Sometimes, arch users request the addition of commands: tla mv , tla mkdir , tla rmdir , and
tla rm that would modify both ids and the corresponding source files. That's a great idea and it's not
all that hard: so, if you're looking for something to do, that's a good idea for a real-world programming
project on which to try-out and learn arch. Let us know on the gnu-arch-users mailing list if you
do this, so that we can consider merging your changes into the distribution.

Late Note: One user recently contributed a tla mv command which aims to be an inventory-id-aware
replacement for mv(1) .

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Importing the First Revision

up: arch Meets hello-world
next: Checking-in Changes
prev: Inventory Ids for Source

Just to Review: If you've been following the examples in the earlier chapters, we now have:

Your arch User ID In Introducing Yourself to arch, you set an ID string that arch uses to identify you.

Your First Archive In Creating a New Archive, you created your first archive and made that your
default archive. In Starting a New Project you added the hello-world project to that archive.

Your Initial Source Tree In Starting a New Source Tree you began to initialize the sources for hello-
world as an arch project tree and in Inventory Ids for Source you assigned inventory ids to the source
files in that project.

Now it's finally time to import the sources for hello-world into your archive. That will happen in
two steps: (1) create a log message; (2) import the sources.

Making the First Log File

You're about to create a new revision of hello-world in your archive: a record of how that project
looked at a particular point in time.

Whenever you create a new revision, the first step is to create a log file for that revision:

 % cd ~/wd/hello-world

 % tla make-log
 ++log.hello-world--mainline--0.1--lord@emf.net--2003-example

The output from that command is the name of a file which you must now edit. Initially it contains:

 Summary:

http://www.regexps.com/

 Keywords:

You should fill out this file just like an email message. Add a short description of the revision in the
Summary: field, and a full description in the body. Just as in email, the body must be separated from
the headers by a blank line. When you're done, the log might look like this:

 Summary: initial import
 Keywords:

 This is the initial import of `hello-world', the killer app
 that will propel our new .com company to a successful IPO.

Usage Note for vi Fans: The default filename of log messages starts with the character + . vi is a non-
standard program in the sense that it treats arguments starting with + as options rather than ordinary
arguments. Therefore, you should be sure to type the filename for vi starting with ./ , as in:

 % vi ./++log.hello-world--mainline--0.1--lord@emf.net--2003-
example

or you could simply:

 % vi `tla make-log`

Shortcut Note: This section describes the "long way" to make the log entry to go with your initial
import. There is a short-cut that can let you skip this step: the -L and -s options to tla import .
We've walked though the long way here but later you might want to try tla import -H to learn
about the shortcut'.

Storing the First Revision in the Archive

Finally, we can ask arch to add our source to the archive:

 % tla import
 [....]

Note: If you have received an error along the lines of These apparent source files lack inventory ids ,
please reread Inventory Ids for Source and either add each file or change the id-tagging-method to
names.

We can observe the side effects of that command in a few ways.

For one thing, we can ask arch what revisions exist in the archive for our project:

 % tla revisions hello-world--mainline--0.1
 base-0

In fact, we can get more detail:

 % tla revisions --summary --creator --date \
 hello-world--mainline--0.1
 base-0
 2003-01-28 00:45:50 GMT
 Tom (testing) Lord <lord@emf.net>
 initial import

What's changed in the project tree? Recall that we have something called a patch log :

 % tla log-versions
 lord@emf.net--2003-example/hello-world--mainline--0.1

Now it has an entry:

 % tla logs hello-world--mainline--0.1
 base-0

 % tla logs --summary --creator --date \
 hello-world--mainline--0.1
 base-0
 2003-01-28 00:45:50 GMT
 Tom (testing) Lord <lord@emf.net>
 initial import

 % tla cat-log hello-world--mainline--0.1--base-0
 Revision: hello-world--mainline--0.1--base-0

 Archive: lord@emf.net--2003-example
 Creator: Tom (testing) Lord <lord@emf.net>
 Date: Mon Jan 27 16:45:50 PST 2003
 Standard-date: 2003-01-28 00:45:50 GMT
 Summary: initial import
 Keywords:
 New-files: ./hw.c ./main.c
 New-patches: \
 lord@emf.net--2003-example/hello-world--mainline--0.1--base-
0

 This is the initial import of `hello-world', the killer app
 that will propel our new .com company to a successful IPO.

Revision Names from import

import created a new revision in the archive. Note that the revision it created is called base-0 and
that we can form a longer name for that revision by prepending the category, branch, and version:

 hello-world--mainline--0.1--base-0
 ^^^^^^^^^^^ ^^^^^^^^ ^^^ ^^^^^^
 | | | |
 | | | patch level name
 | | |
 | | version number
 | |
 | branch name
 |
 category name

If we add in the archive name, we get something called a fully qualified revision name , which is a
globally unique identifier for the revision:

 lord@emf.net--2003-example/hello-world--mainline--0.1--base-0
 ^^^^^^^^^^^^^^^^^^^^^^^^^^
 |
 archive name

Fully qualified names will be of increasing importance as you learn about distributed repositories in later

chapters.

How it Works -- What import Does

Let's look at what import did to the archive:

 # cd to the directory for the version we are working
 # on:
 #
 % cd ~/{archives}
 % cd 2003-example/
 % cd hello-world/
 % cd hello-world--mainline/
 % cd hello-world--mainline--0.1/
 % ls
 base-0

It created a new base-0 directory for the revision.

 % cd base-0
 % ls
 +revision-lock
 hello-world--mainline--0.1--base-0.src.tar.gz
 log

As always, the +revision-lock file is something arch uses internally to keep the archive in a
consistent state under all circumstances.

The log file is a copy of the log message you wrote, with some additional headers added:

 % cat log
 Revision: hello-world--mainline--0.1--base-0
 Archive: lord@emf.net--2003-example
 Creator: Tom (testing) Lord <lord@emf.net>
 Date: Mon Jan 27 16:45:50 PST 2003
 Standard-date: 2003-01-28 00:45:50 GMT
 Summary: initial import
 Keywords:
 New-files: ./hw.c ./main.c
 New-patches: \

 lord@emf.net--2003-example/hello-world--mainline--0.1--base-
0

 This is the initial import of `hello-world', the killer app
 that will propel our new .com company to a successful IPO.

Finally, the compressed tar file is a copy of the source files in your project tree:

 % tar ztf hello-world--mainline--0.1--base-0.src.tar.gz
 hello-world--mainline--0.1--base-0/
 hello-world--mainline--0.1--base-0/hw.c
 hello-world--mainline--0.1--base-0/main.c
 hello-world--mainline--0.1--base-0/{arch}/
 hello-world--mainline--0.1--base-0/{arch}/.arch-project-tree
 hello-world--mainline--0.1--base-0/{arch}/=tagging-method
 hello-world--mainline--0.1--base-0/{arch}/hello-world/
 [....]

You should notice that the tar file does not include every file from your project tree. Specifically, it
contains those files that are listed by:

 % cd ~/wd/hello-world

 % tla inventory --source --both --all
 [....]

Finally, if you poke around in the {arch} subdirectory of your project tree, you'll see two new items:

 % ls
 ++default-version =tagging-method
 ++pristine-trees hello-world

The directory ++pristine-trees contains (at some depth) a copy of the tree you just imported.
This is a cached copy used by other arch commands. (Note: In future releases of arch , it is likely that
the ++pristine-trees subdirectory will be replaced by a different mechanism.)

If you dig around in the hello-world (patch log) directory, you can find a local copy of the log file

for the revision you just created (with extra headers added to that log file).

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Checking-in Changes

up: arch Meets hello-world
next: Retrieving Earlier Revisions
prev: Importing the First Revision

So far, if you're following the examples, we've created a new archive and a hello-world project
within that archive, and we've imported the initial version of hello-world into the archive.

The most common task you're likely to perform as a programming using a revision control system is to
commit a set of changes. In this chapter, we'll look at the most basic way that that works.

warld != world\n

If you look at our hello-world sources, you might notice a spelling error and newline bug:

 % cat hw.c

 #include <stdio.h>

 void
 hello_world (void)
 {
 (void)printf ("hello warld");
 }

Clearly, we meant to say hello world , not hello warld and, if we're going to be conventional,
we probably wanted a newline at the end of the message. So, let's fix those bugs now.

Some Free Advice About Log Messages

Free advice is worth what you pay for it. -- anonymous.

Here's the plan for fixing these bugs: We'll change the source to fix the bugs. Then we'll ask arch to
record the changes need to fix the bugs in the archive. That second step will create a new revision in the
archive.

http://www.regexps.com/

As we noted earlier, whenever you create a new revision, you need to provide a log message for that
revision (see Making the First Log File).

The particular bugs we're about to fix in our toy example are quite trivial -- but in a real world situation,
they would likely be more complicated. You have a choice: you can either wait until all the changes are
done to write the log message describing your changes, or you can write the log message as you go
along.

Here's the free advice: write the log message as you go along. In other words, take notes as you hack. In
terms of tla commands, that means to start the bug fix process with:

 % cd ~/wd/hello-world

 tla make-log
 ++log.hello-world--mainline--0.1--lord@emf.net--2003-example

Then edit your new log file so that it reads:

 Summary: Fix bugs in the "hello world" string
 Keywords:

The Summary: thus explains what you intend to do with the upcoming changes. As you work, you can
fill in the body of the log message.

The Edit/Update-Log Cycle

Pretending that these bugs are more complicated than they actually are, here's how the work might go:

Fix the spelling error. Change warld to world .

Update the log message. Add a note to the log file:

 Summary: Fix bugs in the "hello world" string
 Keywords:

 Spell "world" correctly (not "warld").

Fix the newline error. Add a newline to the message.

Update the log message again. Add a note to the log file:

 Summary: Fix bugs in the "hello world" string
 Keywords:

 Spell "world" correctly (not "warld").

 Add a newline to the hello world message.

Oh My Gosh -- What Have I Done?

So you've just worked long and hard on these complex bug fixes. Wouldn't it be a good idea to review
your work once more before publishing it?

No problem, arch can help:

 tla changes --diffs
 [....]
 *** patched regular files

 **** ./hw.c
 [....]
 @@ -4,7 +4,7 @@
 void
 hello_world (void)
 {
 - (void)printf ("hello warld");
 + (void)printf ("hello world\n");
 }
 [....]

Aha! Now we know. It's time to record that change in the archive.

Storing Changes in the Archive

So now let's record those changes in the archive.

If you didn't take our free advice (see Some Free Advice About Log Messages), now is the time to create
a log message (hint: tla make-log).

To save your changes in the archive, simply:

 % tla commit
 [....]

After the commit completes, there is a new revision in the archive:

 % tla revisions hello-world--mainline--0.1
 base-0
 patch-1

or in more detail:

 % tla revisions --summary hello-world--mainline--0.1
 base-0
 initial import
 patch-1
 Fix bugs in the "hello world" string

Our project tree patch log has been similarly updated:

 % tla logs hello-world--mainline--0.1
 base-0
 patch-1

 % tla logs --summary hello-world--mainline--0.1
 base-0
 initial import
 patch-1
 Fix bugs in the "hello world" string

How it Works -- commit of a New Revision

What does commit do to an archive?

 # cd to the directory for the version we are working
 # on:
 #
 % cd ~/{archives}
 % cd 2003-example/
 % cd hello-world/
 % cd hello-world--mainline/
 % cd hello-world--mainline--0.1/
 % ls
 % ls
 +version-lock =README base-0 patch-1

The patch-1 subdirectory is new:

 % cd patch-1

 % ls
 +revision-lock
 hello-world--mainline--0.1--patch-1.patches.tar.gz
 log

As usual, the log file is the log file you wrote, with some extra headers added:

 % cat log
 Revision: hello-world--mainline--0.1--patch-1
 Archive: lord@emf.net--2003-example
 Creator: Tom (testing) Lord <lord@emf.net>
 Date: Mon Jan 27 22:26:13 PST 2003
 Standard-date: 2003-01-28 06:26:13 GMT
 Summary: Fix bugs in the "hello world" string
 Keywords:
 New-files: \
 {arch}/hello-world/ [....] /patch-log/patch-1
 Modified-files: hw.c
 New-patches: \

 lord@emf.net--2003-example/hello-world--mainline--0.1--
patch-1

 Spell "world" correctly (not "warld").

 Add a newline to the hello world message.

The .patches.tar.gz file is something called a changeset. It describes the changes you made as
differences between the base-0 revision and the patch-1 revision. You'll learn more about the
nature of changesets in later chapters. For now, you can think of a changeset as similar to the output of
diff -r if used to compare the base-0 revision before your recent changes, with that same tree after
your recent changes (or, in the words of one arch user: a "patch set on steroids").

In the project tree:

 % cd ~/wd/hello-world

the commit command had two effects. First, it added a log file under {arch}/hello-world .
Second, it modified {arch}/++pristine-trees to contain a cached copy of the patch-1
revision instead of the base-0 revision.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Retrieving Earlier Revisions

up: arch Meets hello-world
next: Shared and Public Archives
prev: Checking-in Changes

If you've followed along with the examples in earlier chapters, you should have:

Your First Archive which is also your default archive:

 % tla my-default-archive
 lord@emf.net--2003-example

 % tla whereis-archive lord@emf.net--2003-example
 /usr/lord/examples/{archives}/2003-example

A hello-world Project in Your Archive

 % tla categories
 hello-world

 % tla branches hello-world
 hello-world--mainline

 % tla versions hello-world--mainline
 hello-world--mainline--0.1

Two Revisions of the hello-world Project

 % tla revisions hello-world--mainline--0.1
 base-0
 patch-1

In this chapter, you'll learn how to retrieve revisions from your archive.

http://www.regexps.com/

Checking Out the Latest Revision

You might also have a left-over project tree. If so, let's get rid of that:

 % cd ~/wd

 % ls
 hello-world

 % rm -rf hello-world

Let's suppose that you now want to get the latest sources for the hello world project. For that, you want
to use the get command:

 % tla get hello-world--mainline--0.1 hello-world
 [...]

 % ls
 hello-world

 % ls hello-world
 hw.c main.c {arch}

Checking Out An Earlier Revision

Let's suppose we want to check out an earlier version of the hello-world project.

Notice that in the previous example, we asked just for a particular version of the project:

 % tla get hello-world--mainline--0.1 hello-world
 ^^^^^^^^^^^ ^^^^^^^^ ^^^ ^^^^^^^^^^^
 | | | |
 | | | target directory
 | | |
 | | |
 | | version number

 | |
 | branch name
 |
 category name

We can get an earlier revision name by specifying its patch level explicitly:

 % tla get hello-world--mainline--0.1--base-0 hello-world-0
 ^^^^^^^^^^^ ^^^^^^^^ ^^^ ^^^^^^ ^^^^^^^^^^^^^
 | | | | |
 | | | | target directory
 | | | |
 | | | patch level name
 | | |
 | | version number
 | |
 | branch name
 |
 category name

 % ls
 hello-world hello-world-0

 % ls hello-world-0
 hw.c main.c {arch}

You can see the changes made from base-0 to patch-1 with, for example, diff -r :

 % diff -r hello-world-0 hello-world
 diff -r hello-world-0/hw.c hello-world/hw.c
 7c7
 < (void)printf ("hello warld");

 > (void)printf ("hello world\n");
 [...]

How it Works -- Retrieving Revisions With get

Retrieving the base-0 revision is easy. As you should recall, the base-0 revision is stored as a
compressed tar file of the complete source tree (see How it Works -- What import Does). When asked to
retrieve base-0 , the get command essentially just unpacks that tar file.

Retrieving the patch-1 revision happens in two steps. Recall that patch-1 is stored as a changeset
that describes the differences between base-0 and patch-1 (see How it Works -- commit of a New
Revision). Therefore, get works by first retrieving the base-0 revision, then retrieving the patch-1
changeset, then using that changeset to modify the base-0 tree and turn it into a patch-1 tree.
Internally, get uses a tla command called dopatch to apply a changeset, but if you are familiar with
diff/patch patchsets, then you can think of dopatch as "patch on steroids".

Let's suppose that instead of committing just one change you'd committed many changes: not just a
patch-1 revision but patch-2 , patch-3 and so forth. In essence, get will apply each changeset
in order to create the revision you requested.

Note: In fact, get is a bit more complicated than is described here. On the one hand, there are
performance optimizations that can spare get from having to apply a long list of changesets. On the
other hand, there can be revisions created by tag rather than commit , for which different rules apply.
You'll learn more about these exceptions in later chapters.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Shared and Public Archives

up: arch Meets hello-world
next: The update/commit Style of Cooperation
prev: Retrieving Earlier Revisions

In the earlier chapters, you learned how to create your first archive, start a project, check in the initial
sources and subsequent changes, and retrieve past revisions.

In this chapter you'll learn how to make an archive available over a network and begin to learn how
multiple programmers can share a single archive.

Registering for Network Access to Archives

As you should recall, an archive has both a logical name, and a physical location:

 % tla archives
 lord@emf.net--2003-example
 ^^^^^^^^^^^^^^^^^^^^^^^^^^
 | /usr/lord/{archives}/2003-example
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 | |
 | archive location
 |
 archive name

(See Creating a New Archive.)

Some archives can be accessed over a network, currently via any of the protocols:

 FTP
 SFTP
 WebDAV
 plain HTTP

Later in this chapter, you'll learn how to create such archives.

http://www.regexps.com/

For now, you should know that to access such an archive, you register it's name and physical location,
using a URL for the physical location.

For example, to access an HTTP or WebDAV archive:

 % tla register-archive lord@emf.net--2003b \
 http://regexps.srparish.net/{archives}/lord@emf.net--2003b

or an FTP archive:

 % tla register-archive lord@regexps.com--2002 \
 ftp://ftp.regexps.com/{archives}/lord@regexps.com--2002

You can see that these commands have taken effect:

 % tla archives
 lord@emf.net--2003b
 http://regexps.srparish.net/{archives}/lord@emf.net--2003b
 lord@emf.net--2003-example
 /usr/lord/examples/{archives}/2003-example
 lord@regexps.com--2002
 ftp://ftp.regexps.com/{archives}/lord@regexps.com--2002

Working with Several Archives at Once

After you've registered additional archives, how do you access them?

One trivial way is to make the archive you are interested in your default:

 % tla my-default-archive lord@emf.net--2003

 % tla categories
 [...categories in the remote archive...]

It can, of course, be inconvenient to keep changing your default archive. So for now, let's restore it to the
archive we've been using in the examples:

 % tla my-default-archive lord@emf.net--2003-example

There are two other ways to access a remote archive:

Selecting an Archive with -A

Every command that operates on archives accepts a -A option which can be used to override the default:

 % tla my-default-archive
 lord@emf.net--2003-example

 % tla categories -A lord@emf.net--2003
 [... categories in lord@emf.net--2003 ...]

Usage Note: A -A argument takes precedence over your default archive but is overridden by fully
qualified project names (see below).

Fully Qualified Project Names

Commands that accept project names allow you to use fully qualified project names . A fully qualified
name is formed by prefixing an archive name, followed by a slash, to the project name:

 category name:
 tla => lord@emf.net--2003/tla

 branch name:
 tla--devo => lord@emf.net--2003/arch--tla

 version name:
 tla--devo--1.0 => lord@emf.net--2003/tla--devo--1.0

 revision name:
 tla--devo--1.0--patch-1 => lord@emf.net--2003/tla--devo--1.0--
patch-1

As in this example:

 % tla my-default-archive
 lord@emf.net--2003-example

 % tla branches lord@emf.net--2003/hello-world
 [... branches of hello-world in lord@emf.net--2003 ...]

Usage Note: A fully qualified name takes precedence over both -A arguments and your default archive.

Read-only Archives

Operating system and server access controls can be used to limit some or all users to read-only access.
For example, FTP is usually configured in such a way that anonymous users can read, but not modify
the archive.

Creating Local Mirrors, Remote Mirrors, and Remote Archives

A mirror is an archive whose contents are copied from another archive. You can not commit to a mirror
in the ordinary way, you can only update it's copy of it's source.

There are two primary uses for mirror archives: one is to make a local copy of a remote mirror (so that
it's contents can be accessed without going over a network); the other is to make a remote copy of a local
archive (so that others can access that copy).

Mirroring a Remote Archive Locally

Let's suppose that, in order to have the fastest possible access to it, or to be able to use it while
disconnected, you want to mirror a remote archive locally rather than accessing it over network.

Supposing that you wanted to do this with lord@emf.net--2003b , there are three steps (suppose
$remote_location is something like http://my.site.com//archives/lord@emf.net--2003b).

First, register the remote archive under a pseudonum, formed by appending -SOURCE to it's name:

 % tla register-archive lord@emf.net--2003b-SOURCE
$remote_location

Second, create your local mirror:

 % tla make-archive --mirror-from lord@emf.net--2003b-SOURCE
$local_location

That command will, as a side effect, register lord@emf.net--2003b as the name of your local
mirror.

Finally, copy data from the remote archive:

 % tla archive-mirror lord@emf.net--2003b

Whenever the remote archive has been added to, you can incrementally update your mirror by repeating
the tla archive-mirror step.

If you don't want to mirror the entire archive, you can optionally limit the mirror to specific categories,
branches, or versions. See tla archive-mirror -H for more.

Mirroring a Local Archive Remotely

Let's suppose that you have a local archive mine@somewhere.com , and you'd like to "publish" a
mirror of that archive on the Internet so that other people can read from it.

Assuming that you already have mine@somewhere.com registered, you can create the remote mirror
with:

 % tla make-archive --mirror mine@somewhere.com
$remote_location

Arch will write directly to $remote_location, so it must be a writeable transport such as sftp, and not
something such as standard http.

You can initialize or incrementally update the contents of the remote mirror with:

 % tla archive-mirror mine@somewhere.com

One common situation for many people is that they are able to install static files as part of a web site, but
they can't provide WebDAV access to that web site. Even under those conditions you can still publish an
arch archive, though there are two subtleties.

First, when running make-archive, you need to provide an extra flag:

 % tla make-archive --listing --mirror mine@somewhere.com \
 $remote_location

The --listing flag causes arch to keep .listing files up-to-date in the mirror, and that, in turn,
allows people to read from the archive using arch over vanilla HTTP (sans WebDAV support).

Second, it _is_ possible for the .listing files to fall out of date (for example, if you kill an
archive-mirror command at just the right time_. If you know or suspect that has occurred, you can
repair the archive in question by running archive-fixup as in this example:

 % tla archive-fixup mine@somewhere.com-MIRROR

Making a Remote Repository

Although mirroring is a common use of remote repositories, it is possible to create remote repositories
which are not mirrors, and then to commit to those directly.

One can create a remote repository with a command such as:

 % tla make-archive $archive_name $remote_location

or, to create a remote repository with .listing files:

 % tla make-archive --listing $archive_name $remote_location

Mixing Access Modes

There is nothing to prevent you from making a single archive available via multiple access methods. For
example, you can register an FTP accessible archive using a local-filesystem location on the machine
that contains the FTP directory, but ask other users to register it with an ftp: URL.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

The update/commit Style of Cooperation

up: arch Meets hello-world
next: Introducing Changesets
prev: Shared and Public Archives

In earlier chapters, you learned how to add a project to an archive, store the initial sources, store changes
made to those sources, and retrieve revisions from the archive.

In the previous chapter, you learned how to make an archive network accessible.

This chapter will begin to explore how multiple programmers can share an archive, with each of them
making changes to a particular project.

You should take note at the outset that there are really many subtle variations on how programmers can
share archives and otherwise cooperate on a given project. We're starting here with one of the very
simplest techniques.

Alice and Bob Hack main

Let's suppose that Alice and Bob are both working on the hello-world project and that they are
sharing a single archive. In the examples that follow, we'll play both roles.

For starters, each programmer will need their own project tree:

 % cd ~/wd

 % [... remove any directories left from earlier examples ...]

 % tla get hello-world--mainline--0.1 hello-world-Alice
 [....]

 % tla get hello-world--mainline--0.1 hello-world-Bob
 [....]

Alice's task is to add some legal notices to each file. When she's done (but has not yet used commit to
write her changes to the archive), the files look this way:

http://www.regexps.com/

 % cd ~/wd/hello-world-Alice

 % head -3 main.c
 /* Copywrong 1998 howdycorp inc. All rights reversed.*/

 extern void hello_world (void);

 % head hw.c
 /* Copywrong 1998 howdycorp inc. All rights reversed. */

 #include <stdio.h>

Bob, meanwhile, has added a much-needed comment to main :

 % cd ~/wd/hello-world-Bob

 % cat main.c
 extern void hello_world (void);

 int
 main (int argc, char * argv[])
 {
 hello_world ();

 /* Exit with status 0
 */
 return 0;
 }

Note that the two programmers now have modified versions of hello-world , but neither
programmer has the other's changes.

Bob commits First

Let's suppose that Bob is the first to try to commit his changes. Just to review, there are two steps.

First, Bob prepares a log message:

 % cd ~/wd/hello-world-Bob

 % tla make-log
 ++log.hello-world--mainline--0.1--lord@emf.net--2003-example

 [Bob edits the log message.]

 % cat ++log.hello-world--mainline--0.1--lord@emf.net--2003-example
 Summary: commented return from main
 Keywords:

 Added a comment explaining how the return from `main'
 relates to the exit status of the program.

Then he calls commit :

 % tla commit
 [...]

Alice Can Not commit Yet

Now it's Alice's turn:

 % cd ~/wd/hello-world-Alice

 % tla make-log
 ++log.hello-world--mainline--0.1--lord@emf.net--2003-example

 [Alice edits the log message.]

 % cat ++log.hello-world--mainline--0.1--lord@emf.net--2003-example
 Summary: added copywrong statements
 Keywords:

 Added copywrong statements to the source files so
 that nobody can steal HowdyCorp's code.

And then tries to commit:

 % tla commit
 commit: tree is not up-to-date
 (missing latest revision is
 lord@emf.net--2003b--2003-example/hello-world--mainline--0.1--
patch-2)

The problem here is that Bob's changes have already been stored in the archive, but Alice's tree doesn't
reflect those changes.

Studying Why Alice Can Not commit

The commit command told Alice that her tree is "out of date". That means that changes have been
committed to the archive that her tree doesn't have yet.

She can examine the situation in a little more depth by asking what her tree is missing:

 % tla missing
 patch-2

or for more detail:

 % tla missing --summary
 patch-2
 commented return from main

which you should recognize as the Summary: line from Bob's log message.

She can get even more detail with the (previously introduced) revisions command (see Storing the
First Revision in the Archive).

She can view Bob's entire log message:

 % tla cat-archive-log hello-world--mainline--0.1--patch-2
 Revision: hello-world--mainline--0.1--patch-2
 Archive: lord@emf.net--2003-example
 Creator: Tom (testing) Lord <lord@emf.net>

 Date: Wed Jan 29 12:46:50 PST 2003
 Standard-date: 2003-01-29 20:46:50 GMT
 Summary: commented return from main
 Keywords:
 New-files: {arch}/hello-world/[....]
 Modified-files: main.c
 New-patches: \
 lord@emf.net--2003-example/hello-world--mainline--0.1--patch-2

 Added a comment explaining how the return from `main'
 relates to the exit status of the program.

By looking at the headers of that message, Alice can figure out, for example, that Bob modified the file
main.c .

In later chapters, we'll explore more commands that Alice can use to study the changes that Bob made,
but for now, let's turn to how Alice can add those changes to her tree.

The update Command

Alice needs to combine her changes with Bob's before she can commit her changes. One easy way to
do that is the update command:

 % cd ~/wd

 % tla update --in-place hello-world-Alice
 [....]

Now she will find Bob's changes added to her tree:

 % cd hello-world-Alice

 % cat main.c
 /* Copywrong 1998 howdycorp inc. All rights reversed. */

 extern void hello_world (void);

 int

 main (int argc, char * argv[])
 {
 hello_world ();

 /* Exit with status 0
 */
 return 0;
 }

 /* arch-tag: main module of the hello-world project
 */

Since no further changes are missing:

 % tla missing
 [no output]

commit is happy to proceed:

 % tla commit
 [....]

Learning Note: If you're following along with the examples, you should still have a tree in hello-
world-Bob that has Bob's changes, but not Alice's. Try various commands for that directory to explore
(missing , update , changes and so forth).

How it Works -- The update Command

A full explanation of how update works is a little beyond the scope of this chapter. You'll be able
understand update in detail after a few of the later chapters (on changesets and patch logs).

For now, if you are familiar with diff and patch , you can think of it this way:

When update is run in Alice's tree, it notices that the archive is up to a patch-2 revision, but that her
tree was checked out as a get of the patch-1 revision. update works in three steps:

First, it uses a command called mkpatch (which is kind of a fancier variation on diff) to compute a
changeset (a fancy patch set) that describes the changes Alice made to her tree.

Second, it checks out a copy of the patch-2 revision and replaces Alice's tree with that revision.

Third, update uses dopatch (a fancier patch) to apply the changeset from the first step to the new
tree.

You may be wondering how patch conflicts are handled. The examples above were carefully crafted to
avoid any conflicts. Don't worry -- we'll get to that topic soon enough (see Inexact Patching -- How
Conflicts are Handled).

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Introducing Changesets

up: arch Meets hello-world
next: Exploring Changesets
prev: The update/commit Style of Cooperation

It is often extremely useful to compare two project trees (usually for the same project) and figure out
exactly what has changed between them. A record of such changes is called a changeset or a delta .

Changesets are a very central concept to arch -- much of arch is defined in terms of operations
performed with changesets.

If you have a changeset between an "old tree" and a "new tree", you can "apply the changeset" to the old
tree to get the new tree -- in other words, you can automatically make the editing changes described by a
changeset. If you have some third tree, you can apply the patch to get an approximation of making the
same changes to that third tree.

arch includes sophisticated tools for creating and applying changesets.

● mkpatch
● dopatch
● Inexact Patching -- How Conflicts are Handled

mkpatch

up: Introducing Changesets
next: dopatch

mkpatch computes a changeset describing the differences between two trees. The basic command
syntax is:

 % tla mkpatch ORIGINAL MODIFIED DESTINATION

which compares the trees ORIGINAL and MODIFIED .

http://www.regexps.com/

mkpatch creates a new directory, DESTINATION , and stores the changeset there.

When mkpatch compares trees, it uses inventory ids. For example, it considers two directories or two
files to be "the same directory (or file)" if they have the same id -- regardless of where each is located in
its respective tree. (See Inventory Ids for Source.)

A changeset produced by mkpatch describes what files and directories have been added or removed,
which have been renamed, which files have been changed (and how they have been changed), and what
file permissions have changed (and how). When regular text files are compared, mkpatch produces a
context diff describing the differences. mkpatch can compare binary files (saving complete copies of
the old and new versions if they differ) and symbolic links (saving the old and new link targets, if they
differ).

A detailed description of the format of a changeset is provided in an appendix (see The arch Changeset
Format).

dopatch

up: Introducing Changesets
next: Inexact Patching -- How Conflicts are Handled
prev: mkpatch

dopatch is used to apply a changeset to tree:

 % tla dopatch PATCH-SET TREE

If tree is exactly the same as the the "original" tree seen by mkpatch , then the effect is to modify
tree so that it is exactly the same as the the "modified" tree seen by mkpatch , with one exception
(explained below).

"Exactly the same" means that the directory structure is the same, symbolic link targets are the same, the
contents of regular files are the same, and file permissions are the same. Modification times, files with
multiple (hard) links, and file ownership are not reliably preserved.

The exception to the "exactly the same" rule is that if the patch requires that files or directories be
removed from tree , those files and directories will be saved in a subdirectory of tree with an eye-
splitting name matching the pattern:

 ++removed-by-dopatch-PATCH--DATE

where PATCH is the name of the patch-set directory and DATE a timestamp.

Inexact Patching -- How Conflicts are Handled

up: Introducing Changesets
prev: dopatch

What if a tree patched by dopatch is not exactly the same as the original tree seen by mkpatch ?

Below is a brief description of what to expect. Complete documentation of the dopatch process is
included with the source code.

dopatch takes an inventory of the tree being patched. It uses inventory ids to decide which files and
directories expected by the changeset are present or missing from the tree, and to figure out where each
file and directory is located in the tree.

Simple Patches If the changeset contains an ordinary patch or metadata patch for a link, directory or
file, and that file is present in the tree, dopatch applies the patch in the ordinary way. If the patch
applies cleanly, the modified file, link, or directory is left in place.

If a simple patch fails to apply cleanly, dopatch will always leave behind a .orig file (the file
originally in the tree being patched, without any changes) and a .rej file (the part of the patch that
could not be applied).

If the patch was a context diff, dopatch will also leave behind the file itself -- partially patched.

If an (unsuccessful) patch was for a binary file, no partially-patched file will be left. Instead, there will
be:

 .orig -- the file originally in the tree being patched,
 without modifications.

 .rej -- a complete copy of the file from the modified tree,
 with permissions copied from `.orig'.

 .patch-orig -- a complete copy of the file from the original

 tree seen by `mkpatch', with permissions
 retained from that original

 -or-

 the symbolic link from the original tree seen
 by `mkpatch' with permissions as in the
original
 tree.

If an (unsuccessful) patch was for a symbolic link, no partially patched file will be left. Instead there will
be:

 .orig -- the unmodified file from the original tree

 .rej -- a symbolic link with the target intended by the
 patch and permissions copied from .orig

 .patch-orig -- a complete copy of the file from the original
 tree seen by `mkpatch', with permissions
 retained from that original

 -or-

 the symbolic link from the original tree seen
 by `mkpatch' with permissions as in the
original
 tree.

Patches for Missing Files

All patches for missing files and directories are stored in a subdirectory of the root of the tree being
patched called

 ==missing-file-patches-PATCH-DATE

where PATCH is the basename of the changeset directory and DATE a time-stamp.

Directory Rearrangements and New Directories

Directories are added, deleted, and rearranged much as you would expect, even if you don't know it's
what you'd expect.

Suppose that when mkpatch was called the ORIGINAL tree had:

 Directory or file: Id:

 a/x.c id_1
 a/bar.c id_2

but the MODIFIED tree had:

 a/x.c id_1
 a/y.c id_2

with changes to both files. The patch will want to rename the file with id id_2 to y.c , and change the
contents of the files with ids id_1 and id_2 .

Suppose, for example, that you have a tree with:

 a/foo.c id_1
 a/zip.c id_2

and the you apply the patch to that tree. After the patch, you'll be left with:

 a/foo.c id_1
 a/y.c (was zip.c) id_2

with patches made to the contents of both files.

Here's a sample of some subtleties and ways of handling conflicts:

Suppose that the original tree seen by mkpatch has:

 Directory or file: Id:

 ./a id_a
 ./a/b id_b
 ./a/b/c id_c

and that the modified directory has:

 ./a id_a
 ./a/c id_c
 ./a/c/b id_b

Finally, suppose that the tree has:

 ./x id_a
 ./x/b id_b
 ./x/c id_new_directory
 ./x/c/b id_different_file_named_b
 ./x/c/q id_c

When patch gets done with the tree, it will have:

 ./x id_a
 Since the patch doesn't do anything
 to change the directory with id_a.

 ./x/c.orig id_new_directory
 ./x/c.rej id_c
 Since the patch wants to make the
 directory with id_c a subdirectory named "c"
 of the directory with id_a, but the tree
 already had a different directory there,
 with the id id_new_directory.

 ./x/c.rej/b id_b
 Since the patch wants to rename the directory

 with id_b to be a subdirectory named "b"
 of the directory with id_c.

 ./x/c.orig/b id_different_file_named_b
 Since the patch made new changes to this file,
 it stayed with its parent directory.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Exploring Changesets

up: arch Meets hello-world
next: Introducing replay -- An Alternative to update
prev: Introducing Changesets

The previous chapter introduced changesets and the commands mkpatch and dopatch (fancy
variations on the theme of the traditional diff and patch programs).

In this chapter, we'll look in a bit more detail about how changesets are used in archives, how they are
used by the commit and update commands, and what this implies for how you can make the best use
of arch .

How it Works -- commit Stores a Changeset in the Archive

Suppose that you get the latest revision of a project, make some changes, write a log message, and
commit those changes to an archive. What happens?

In essence, commit:

1 Computes a changeset that describes what changes you've made compared to the latest revision.

2 Creates a directory for the new revision in the archive.

3 Stores your log message and the changeset in the archive.

In that light, you might want to go back and review an earlier section: How it Works -- commit of a New
Revision.

get-changeset Retrieves a Changeset from an Archive

Earlier, you learned that the cat-archive-log command retrieves a log message from an archive
(see Studying Why Alice Can Not commit).

You can also retrieve a changeset from an archive:

 % cd ~/wd

http://www.regexps.com/

 % tla get-changeset hello-world--mainline--0.1--patch-1 patch-
1
 [...]

get-changeset retrieves the changeset from the archive and, in this case, stores it in a directory
called patch-1 .

(The format of changesets is described in The arch Changeset Format.)

Using show-changeset to Examine a Changeset

The changeset format is optimized for use by programs, not people. It's awkward to look at a changeset
"by hand". Instead, you may wish to consider getting a report of the patch in diff format by using:

 % tla show-changeset --diffs patch-1

 [...]

If you've been following along with the examples, you'll recognize the output format of show-
changeset from the changes command introduced earlier (see Oh My Gosh -- What Have I
Done?).

Using commit Well -- The Idea of a Clean Changeset

When you commit a set of changes, it is generally "best practice" to make sure you are creating a clean
changeset .

A clean changeset is one that contains only changes that are all related and for a single purpose. For
example, if you have several bugs to fix, or several features to add, try not to mix those changes up in a
single commit .

There are many advantages to clean changesets but foremost among them are:

Easier Review It is easy for someone to understand a changeset if it is only trying to do one thing.

Easier Merging As we'll learn in later chapters, there are circumstances in which you'll want to look at

a collection of changesets in an archive and pick-and-choose among them. Perhaps you want to grab
"bug fix A" but not "new feature B". If each changeset has only one purpose, that kind of cherrypicking
is much more practical.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Introducing replay -- An Alternative to update

up: arch Meets hello-world
next: Selected Files Commit
prev: Exploring Changesets

update isn't the only way to catch-up with a development path. Another option is replay :

 % cd ~/wd/project-tree
 % tla replay
 [....]

What does that actually do?

An update Refresher

Let's suppose that we check out an old version of hello-world :

 % cd ~/wd
 % tla get hello-world--mainline--0.1--patch-1 hw-patch-1
 [...]

It's easy to see that the resulting tree is not up-to-date:

 % cd hw-patch-1
 % tla missing
 patch-2
 patch-3

Now, let's suppose that we make some local changes in hw-patch-1 and then run update . What
happens?

Local changes are computed against patch-1. In other words, a changeset is created that represents the
changes from a pristine copy of the patch-1 revision to the current state of the project tree (hw-
patch-1).

http://www.regexps.com/

A copy of patch-3 is checked out. update starts with a pristine copy of the patch-3 revision.

The changeset is applied to the patch-3 tree. The changes computed in the first step are made to the
new tree.

There's another way, though:

The replay Command

We have a local copy of the patch-1 , perhaps with some local changes:

 % cd ~/wd/hw-patch-1
 % tla missing
 patch-2
 patch-3

Recall that the patch-2 and patch-3 revisions each correspond to a specific changeset, stored in the
archive (see How it Works -- commit of a New Revision).

We could add those changes to your local tree by using get-changeset to retrieve each changeset,
and dopatch to apply it (see get-changeset Retrieves a Changeset from an Archive, and dopatch).
That's a lot of tedious work, though, so arch provides a more automated way to accomplish that same
effect:

 % cd ~/wd/hw-patch-1
 % tla replay
 [....]
 % tla missing
 [no output]

replay will do just what we've described: get patches from the archive and apply them one-by-one.
One word of caution, though: if one of those patches generates conflicts, replay will stop there and let
you fix the conflicts. You can then pick up where replay left off by running replay a second time.

How it Works -- replay

If you've followed along with the tutorial so far, the way that replay works should be pretty obvious.
In fact, it's just exactly how we described it above. replay uses missing to find out what changes
your tree is missing, get-changeset to retrieve those changesets, and dopatch to apply them.

There's a fair amount of "bookkeeping" involved in doing that -- and that bookkeeping is what replay
automates for you.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Selected Files Commit

up: arch Meets hello-world
next: Elementary Branches -- Maintaining Private Changes
prev: Introducing replay -- An Alternative to update

Earlier, you learned how to commit all of the changes within a tree at once (see Checking-in Changes).

You also have read a bit about the importance of making "clean" changesets (see Using commit Well --
The Idea of a Clean Changeset).

This chapter shows you a little trick that you can use in a very specific but common situation.

The Quick Fix Problem

Let's suppose that you have a large project tree and you're in the middle of making some complicated
change. You've modified many files, but there are many others that you haven't touched.

Suddenly, you notice a trivial bug in one of the untouched files.

What you'd really like to do is:

1) Stop and fix the trivial bug.

2) Commit just that trivial bug fix.

3) Get back to work on the complicated changes.

How can you do that?

The Brute Force Solution to the Quick Fix Problem

There's an easy "brute force" solution to the problem.

Simply:

Check out a fresh copy of the latest revision. In other words, create a second project tree with no
modifications.

http://www.regexps.com/

Fix the trivial bug in the new tree and commit. Now you've committed a clean change with just the
trivial bug fix.

Use update or replay to Bring Your Original Tree Up to Date. That will add the trivial bug fix back
to your tree with the partially completed changes.

That works, but it can be a little awkward. Do you really need to start a second project tree just to fix
this trivial bug?

Sometimes the awkwardness is well worth it. For example, your project might have a policy the before
every commit , you must run some tests. In that case, yes, you really do need a second tree.

Sometimes the awkwardness is nearly unavoidable. For example, if the trivial bug fix involves
modifying files that you've already heavily modified, then again, the brute force technique may be the
simplest approach (but also, take a look at tla undo --help and tla redo --help).

But there is a simpler way that sometimes applies:

Solving the Quick Fix Problem with commit --

As it turns out, commit lets you commit only the changes made to just a few files.

If your quick fix changes file-a.c and file-b.c , then after preparing a log message, you can
commit just those files with:

 % tla commit -- file-a.c file-b.c

You should note that the files committed this way must not be new files and that, even if those files have
been renamed, the commit will record only the changes internal to those files, not the renames.

The Quick Fix Problem -- There's More Than One Way to Do It

In the text above, we speculated about a "brute force" solution to the quick-fix problem that involved
checking out a whole new project tree.

Two other command, tla undo and tla redo , provide an alternative "brute force" solution with
some advantages. These are described in a later chapter (see xref : !!!)../

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System

The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Elementary Branches -- Maintaining Private Changes

up: arch Meets hello-world
next: Patch Logs and Project Tree History
prev: Selected Files Commit

In this chapter, we'll begin to explore the concept of branching , which you may be familiar with from
other revision control systems.

If you are already familiar with the concept, you should be aware that branching in arch almost
certainly goes far beyond what you are accustomed to.

Regardless of whether or not you are familiar with the concept, fear not -- we'll be starting slow:

A Branching Scenario -- The Need for Private Changes

Let's suppose for the moment that the hello-world project is making its sources available as a
public, read-only mirror (see Shared and Public Archives).

Early on, you (someone not involved in the hello-world project) decides that you'll want to use their
program, but that you'll need to make some local changes.

As a sort of toy example, let's suppose that you've decided that in your environment, saying hello world
is unacceptable -- you really require the more correctly punctuated hello, world .

Now, here's the problem: sure, you can download their sources and make that change. But meanwhile,
the project is going to keep working. They're going to keep making changes. So, you'll be faced with a
perpetual task of repeatedly downloading their latest sources and copying your changes to their latest
version.

arch can help automate that task, and this chapter explains how.

Making a Branch from a Remote Project in a Local Archive

In the examples that follow, you'll be changing roles. Instead of "playing" Alice or Bob, the
programmers on the hello-world project, you'll be playing Candice: a third party.

Let's start by giving Candice her own archive to use, and making that the default archive:

http://www.regexps.com/

 % tla make-archive candice@candice.net--2003-candice \
 ~/{archives}/2003-candice

 % tla my-default-archive candice@candice.net--2003-candice
 default archive set (candice@candice.net--2003-candice)

(You can review what those commands do by reading Creating a New Archive.)

Candice needs to create a hello-world project in her own archive. She can use:

 % tla archive-setup hello-world--candice--0.1

She doesn't have to use the same project name that Alice and Bob are using and, in fact, in this case she
chose a different branch name. (To review those commands, see Starting a New Project.)

When Alice and Bob created their archive, they used import to create the first revision. Since we're
creating a branch, we'll use a different command.

For the sake of example, let's suppose Candice is going to start from the patch-1 revision of Alice and
Bob's archive:

 % tla tag \
 lord@emf.net--2003-example/hello-world--mainline--0.1--patch-
1 \
 hello-world--candice--0.1
 [....]

There are a few things worth noting about that command.

First, note that we used a fully qualified revision name to refer to Alice and Bob's patch-1 revision.
That's because that revision is in some archive other than the current default archive. (See Working with
Several Archives at Once.)

Next, note that we specified the patch-1 revision explicitly. If we had left of the --patch-1 suffix,
then the tag command would assume we meant the latest revision in Alice and Bob's archive (which
happens to be patch-3).

What tag Just Did

After using tag , Candice now has a new revision in her archive:

 % tla revisions --summary hello-world--candice--0.1
 base-0
 tag of lord@emf.net--2003-example/hello-world--mainline--0.1--
patch-1

She can retrieve that revision in the usual way:

 % tla get hello-world--candice--0.1 hw-candice
 [...]

 % ls hw-candice
 hw.c main.c {arch}

Nifty arch Feature: If you've followed along closely, you should have noticed that Candice created a
branch in her archive from an arch revision stored in another archive entirely. In our examples, both of
these archives happen to be on the local file system but that isn't necessary: Candice could have formed
her branch even if she was accessing Alice and Bob's archive over the network.

Usage Caution: Candice's job isn't quite done yet. The next section explains another step she'll probably
want to take.

Caching a tag Revision

Candice used tag to create a branch from Alice and Bob's archive. When she uses get to check-out
that revision, what happens? Roughly speaking, arch notices that the revision is a branch, then consults
Alice and Bob's archive to really get the source.

The question then arises: what if Alice and Bob's archive "goes away"? As things stand, if that happens,
Candice will no longer be able to get from her branch.

She can fix that though by caching in her archive all of the information needed to build the revision:

 % tla cacherev hello-world--candice--0.1--base-0
 [...]

and confirm that that worked with:

 % tla cachedrevs hello-world--candice--0.1
 hello-world--candice--0.1--base-0

Thereafter, arch will no longer rely on Alice and Bob's archive to retrieve Candice's base-0 revision.

Exploring the New Branch

Earlier, Candice created her branch and used get to check it out. Let's examine that tree:

 % cd ~/wd/hw-candice

 % tla log-versions
 candice@candice.net--2003-candice/hello-world--candice--0.1
 lord@emf.net--2003-example/hello-world--mainline--0.1

Note that Candice's tree has patch logs both for Alice and Bob's versions, and for her own branch:

 % tla logs --summary \
 lord@emf.net--2003-example/hello-world--mainline--0.1
 base-0
 initial import

 patch-1
 Fix bugs in the "hello world" string

 % tla logs --summary hello-world--candice--0.1
 base-0
 tag of \
 lord@emf.net--2003-example/hello-world--mainline--0.1--patch-1

There are not any later changes on Candice's branch:

 % tla missing hello-world--candice--0.1
 [no output]

but recall that Alice and Bob are already up to patch-3 :

 % tla missing -A lord@emf.net--2003-example \
 hello-world--mainline--0.1
 patch-2
 patch-3

Making a Local Change

After the initial tag , Candice can commit changes to her branch in the usual way.

Let's suppose that she has edited hw.c so that it now reads (in part):

 % cat hw.c
 [...]
 void
 hello_world (void)
 {
 (void)printf ("hello, world\n");
 }
 [...]

and that's she's prepared a log message:

 % cat ++log.hello-world--candice--0.1--lord@emf.net--2003-candice
 Summary: Punctuated the output correctly
 Keywords:

 This program should say "hello, world" not "hello world".

Now she can simply commit in the usual way, creating her own patch-1 revision:

 % tla commit
 [....]

 % tla revisions --summary hello-world--candice--0.1
 base-0
 tag of \
 lord@emf.net--2003-example/hello-world--mainline--0.1--patch-1
 patch-1
 Punctuated the output correctly

Updating from a Branched-from Version

Meanwhile, Alice and Bob have gone on to create their revisions patch-2 and patch-3 . How can
Candice add those changes to her branch?

Well, really, arch provides lots of techniques. Using commands we've already introduced, she could
use either update or replay . In this example, we'll demonstrate using replay .

 % cd ~/wd/hw-candice

 % tla replay -A lord@emf.net--2003-example \
 hello-world--mainline--0.1

 [...]

Note that we used a -A argument to say which archive we are replaying changes from, and a version
name to say which changes we want. In this case, replay applied the changesets for patch-2 and
patch-3 to Candice's tree.

This use of replay is a form of merging : Candice's local changes have been merged with Alice and
Bob's mainline changes.

Learning Note: If you're following along with the examples, you should examine hw.c and notice that
Candice's change to the printf string and Alice's addition of a "copywrong" notice are both included.

Learning Note: You should also check out a second copy of Candice's patch-1 revision and
experiment with doing the same merge using update instead of replay . You might have to look at
tla update -help to figure out exactly what options and arguments to provide.

Note also that, so far, we've only made these changes to Candice's project tree -- they haven't been
checked into Candice's archive. To actually record the merge in her archive, she'll have to make a log
message and commit in the usual way (see Checking-in Changes).

There is, however, one more convenience to point out. When Candice writes her log message, she'll
presumably want to note that the merge took place and what it involves. arch includes a command
whose output is ideal for inclusion in such a log message:

 % cd ~/wd/hw-candice

 % tla log-for-merge
 Patches applied:

 * lord@emf.net--2003-example/hello-world--mainline--0.1--patch-3
 added copywrong statements

 * lord@emf.net--2003-example/hello-world--mainline--0.1--patch-2
 commented return from main

How It Works -- tag and Elementary Branches

What did tag do? Let's look at Candice's archive:

 % cd ~/{archives}
 % cd 2003-candice
 % cd hello-world
 % cd hello-world--candice
 % cd hello-world--candice--0.1

 % ls
 +version-lock base-0 patch-1
 patch-2

Of particular interest is the base-0 revision -- the one created by tag :

 % cd base-0

 % ls
 CONTINUATION
 hello-world--candice--0.1--base-0.patches.tar.gz
 hello-world--candice--0.1--base-0.tar.gz
 log

 % cat CONTINUATION
 lord@emf.net--2003-example/hello-world--mainline--0.1--patch-1

The file CONTINUATION identifies this revision as a tag revision. Its contents tell us what revision we
branched from.

The changeset for this revision (....patches.tar.gz) was also created by tag . If you explore
that changeset (recall get-changeset and show-changeset) you'll see that all it does is add a
log entry to the tree's patch log.

The source file (...base-0.tar.gz) was created by archive-cache-revision . It contains
a complete copy of Candice's base-0 revision. Since that file is there, get is not obligated to look at
Alice and Bob's archive to construct this revision.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Patch Logs and Project Tree History

up: arch Meets hello-world
next: Development Branches -- The star-merge Style of Cooperation
prev: Elementary Branches -- Maintaining Private Changes

In the previous chapter, we began to learn about branching and merging. We saw how commands like
missing , update , and replay can be used to keep track of and apply changes from multiple
branches of a project.

In this chapter, we'll explain a bit about patch logs : the mechanism that is used to keep track of the
history of a project tree, including that part of the history that is used for intelligent merging.

You should recall first encountering patch logs in earlier chapters (for example, when first initializing a
project tree, in Starting a New Source Tree). In this chapter, patch logs are explained in greater depth.

Project Trees Have Patch Logs

Recall that every initial import, tag revision, and changeset revision in an archive has an associated log
message. That message consists of the headers and body that you supply to commands such as import
and commit , plus additional headers that are automatically generated by arch .

When a project tree is first imported to an archive, the patch log entry for the new revision is added to
the tree. When a commit takes place, as part of the process of committing, the log entry for the new
revision is added to the tree. If you get a revision created by the tag command, you'll also find that it
contains a patch log entry for the tag revision.

Patch log entries accumulate. Thus, for example, each commit adds a new log entry and all earlier log
entries are preserved. Each tag revision includes not only the entry for the tag, but all log entries
inherited from the revision being tagged.

Returning to our earlier examples, let's take a look at Alice and Bob's patch-2 revision:

 % cd ~/wd

 [... remove directories from earlier examples ...]

 % tla get -A lord@emf.net--2003-example \

http://www.regexps.com/

 hello-world--mainline--0.1--patch-2 \
 hw-AnB-2

 [...]

 % cd ~/hw-AnB-2

First, we note that patch logs are sorted by arch version names. This tree has logs from only one
version:

 % tla log-versions
 lord@emf.net--2003-example/hello-world--mainline--0.1

Within that version, it has logs for the initial import, and two changesets:

 % tla logs -A lord@emf.net--2003-example \
 --summary \
 hello-world--mainline--0.1
 base-0
 initial import
 patch-1
 Fix bugs in the "hello world" string
 patch-2
 commented return from main

Examining one of those log entries in particular:

 % tla cat-log -A lord@emf.net--2003-example \
 hello-world--mainline--0.1--patch-2
 Revision: hello-world--mainline--0.1--patch-2
 Archive: lord@emf.net--2003-example
 Creator: Tom (testing) Lord <lord@emf.net>
 Date: Wed Jan 29 12:46:50 PST 2003

 Standard-date: 2003-01-29 20:46:50 GMT
 Summary: commented return from main
 Keywords:
 New-files: \
 {arch}/[...]/hello-world--mainline--0.1/[...]/patch-log/
patch-2
 Modified-files: main.c
 New-patches: \
 lord@emf.net--2003-example/hello-world--mainline--0.1--
patch-2

 Added a comment explaining how the return from `main'
 relates to the exit status of the program.

we can see, for example, that the patch-2 changeset modified the file main.c and added a new file,
the log entry itself (whose name is abbreviated in the output displayed above).

Other examples worth considering come from Candice's tree. Recall that she used tag to fork from
Alice and Bob's tree at their patch-1 revision. Therefore we see:

 % cd ~/wd

 % tla get -A candice@candice.net--2003-candice \
 hello-world--candice--0.1--patch-2 \
 hw-C-0

 [...]

 % cd ~/hw-C-0

 % tla log-versions
 candice@candice.net--2003-candice/hello-world--candice--0.1
 lord@emf.net--2003-example/hello-world--mainline--0.1

 % tla logs -A lord@emf.net--2003-example \
 --summary \
 hello-world--mainline--0.1
 base-0
 initial import

 patch-1
 Fix bugs in the "hello world" string

 % tla logs -A candice@candice.net--2003-candice \
 --summary \
 hello-world--candice--0.1
 base-0
 tag of \
 lord@emf.net--2003-example/hello-world--mainline--0.1--
patch-1

How It Works -- missing

In earlier chapters, you learned how the command missing can tell you about changes commited to
archives, but not yet present in a given project tree (see Studying Why Alice Can Not commit and
Exploring the New Branch).

It should now be easy to understand how those commands work. arch can find the list of all revisions
in a given version using the revisions command:

 % tla revisions -A lord@emf.net--2003-example \
 hello-world--mainline--0.1
 base-0
 patch-1
 patch-2
 patch-3

Those are the logs in the archive. arch can find out the list of revisions for which a project tree has log
entries with logs :

 % tla logs -A lord@emf.net--2003-example \
 hello-world--mainline--0.1
 base-0
 patch-1
 patch-2

The difference between those two lists is the output of missing :

 % tla missing -A lord@emf.net--2003-example \
 hello-world--mainline--0.1
 patch-3

The Concept of Change History and Tree Ancestry

Patch logs give important insight into the history of a tree. There are two views worth mentioning: the
change history view, and the tree ancestry view.

Change History

When a tree has a log for a given commit changeset, that means that the changes from that commit
have been applied to the tree: the commit changeset is part of the "change history" of the tree. If the
changeset were a bug fix, for example, then this is a likely indication that the bug fix is present in the
tree.

Note: The mere fact that a given changeset is part of the change history of a tree isn't absolute proof that
the changes made by that changeset are present in the tree. For example, those changes might have been
"undone" by a later change. Nevertheless, the change history of a tree is a useful tool for exploring and
understanding its state.

Tree Ancestry

Informally, we say that an archived revision is a tree ancestor of a given project tree if it has patch log
entries for all of the revisions in the version of that archived revision up to to the archived revision itself.

Thus, for example, Candice's tag revision has Alice and Bob's patch-1 revision as an ancestor because
it has logs for Alice and Bob's revisions:

 base-0
 patch-1

And Candices's patch-2 revision, which merges in changes from Alice and Bob's patch-2 and
patch-3 , has both of those additional revisions as ancestors (see Updating from a Branched-from
Version).

Automated ChangeLogs

The command tla changelog generates a GNU-style ChangeLog file from a patch log:

 % cd ~/wd

 % tla get -A candice@candice.net--2003-candice \
 hello-world--candice--0.1 \
 hw-C-latest
 [....]

 % cd ~/wd/hw-C-latest

 % tla changelog
 # do not edit -- automatically generated by arch changelog
 # arch-tag: automatic-ChangeLog-- [...]
 #

 2003-01-30 GMT Tom (testing) Lord <lord@emf.net> patch-2

 Summary:
 merge from mainline sources
 Revision:
 hello-world--candice--0.1--patch-2

 Patches applied:

 * lord@emf.net--2003-example/hello-world--mainline--0.1--
patch-3
 added copywrong statements

 * lord@emf.net--2003-example/hello-world--mainline--0.1--
patch-2
 commented return from main

 new files:

 {arch}/ [...] /hello-world--mainline--0.1 [...] /patch-2
 {arch}/ [...] /hello-world--mainline--0.1 [...] /patch-3

 modified files:
 hw.c main.c

 new patches:
 lord@emf.net--2003-example/hello-world--mainline--0.1--patch-2
 lord@emf.net--2003-example/hello-world--mainline--0.1--patch-3

 2003-01-30 GMT Tom (testing) Lord <lord@emf.net> patch-1

 Summary:
 Punctuated the output correctly
 Revision:
 hello-world--candice--0.1--patch-1

 This program should say "hello, world" not "hello world".

 modified files:
 hw.c

 2003-01-30 GMT Tom (testing) Lord <lord@emf.net> base-0

 Summary:
 tag of lord@emf.net--2003-example/hello-world--mainline--0.1--
patch-1
 Revision:
 hello-world--candice--0.1--base-0

 (automatically generated log message)

 new patches:
 lord@emf.net--2003-example/hello-world--mainline--0.1--base-0
 lord@emf.net--2003-example/hello-world--mainline--0.1--patch-1

Note that the generated ChangeLog includes a tagline . If you save the output of the changelog
command in a project tree, either using tagline ids or giving it an explicit id that matches the tagline s
id, the commands such as commit will automatically keep the ChangeLog up to date.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Development Branches -- The star-merge Style of Cooperation

up: arch Meets hello-world
next: Symbolic Tags
prev: Patch Logs and Project Tree History

In earlier chapters, we developed an extended example out of the hello-world project.

Alice and Bob, the primary programmers on the project, started one archive and created some revisions
there.

Candice, a user of the project, created her own archive, started a branch of the hello-world project,
and began maintaining her own local modifications.

In this chapter, we'll begin to consider a situation that is more typical of free software projects in the real
world. Here, we'll consider Alice and Bob to be the maintainers of a public project, and Candice as a
major remote contributor to the project. We'll identify the new revision control needs that arise from that
arrangement, and look at some arch commands that help to satisfy those needs.

Promoting an Elementary Branch to a Development Branch

So far, if you've been following the examples, Candice has an elementary branch. She made a branch
from the mainline, made some local changes, and has kept her branch up-to-date with Alice and Bob's
mainline.

We're supposing, at this point, that Alice and Bob want to merge Candice's changes into the mainline.

Well, that merging work has already been done. Candice's latest revision is exactly the tree that Alice
and Bob want. They can incorporate that merge into their mainline very simply, by committing
Candice's latest revision to their own mainline:

 % tla get -A candice@candice.net--2003-candice \
 hello-world--candice--0.1 \
 hw-C
 [...]

 % cd hw-C

http://www.regexps.com/

 % tla set-tree-version -A lord@emf.net--2003-example \
 hello-world--mainline--0.1

 % tla make-log
 ++log.hello-world--mainline--0.1--lord@emf.net--2003-example

 [... edit log file (consider `tla log-for-merge') ...]

 % cat ++log.hello-world--mainline--0.1--lord@emf.net--2003-
example
 Summary: merge from Candice's Branch
 Keywords:

 Patches applied:

 * candice@candice.net--2003-candice/hello-world--candice--
0.1--patch-2
 merge from mainline sources

 * candice@candice.net--2003-candice/hello-world--candice--
0.1--patch-1
 Punctuated the output correctly

 * candice@candice.net--2003-candice/hello-world--candice--
0.1--base-0
 tag of
 lord@emf.net--2003-example/hello-world--mainline--0.1--
patch-1

 % tla commit
 [....]

Read Carefully Note: Note carefully the trick we just used. Candice's latest revision was exactly what
Alice and Bob wanted -- they combined get with set-tree-version to turn Candice's tree into
one they could easily commit to their own mainline.

Simple Development Branches

Let's consider what happens as development proceeds on both branches. For this purpose, we'll
introduce something new: a way of diagraming branches and the merges between them.

After the examples so far, we have this situation:

 mainline--0.1 candice--0.1
 ------------- ------------
 base-0 -----------> base-0 (a tag)
 patch-1 ---------' patch-1
 patch-2 ----------> patch-2
 patch-3 ----------' --------'
 patch-4 <-----------'

which tells us that the candice branch is a tag of patch-1 from the mainline; that at patch-2 of
the candice branch, there was a merge of everything up to patch-3 of the mainline ; and finally
that patch-4 of the mainline merges in everything up to patch-2 from the candice branch.

Whenever we have a such a diagram in which none of the merge lines cross, that is a simple
development branch .

The significance of a simple development branch is that it's a model for how two development efforts
can work asynchronously on one project. Within each effort -- on each branch -- programmer's use the
"update/commit" style of cooperation (see The update/commit Style of Cooperation). However, changes
on one branch have no effect on the other until the two branches are merged.

Introducing The Development Branch Merging Problem

Let's suppose that more work happens on both the mainline and candice branches, leaving us with:

 mainline--0.1 candice--0.1
 ------------- ------------
 base-0 -----------> base-0 (a tag)
 patch-1 ---------' patch-1
 patch-2 ----------> patch-2
 patch-3 ----------' --------' patch-3
 patch-4 <-----------' patch-4
 patch-5
 patch-6

 % tla revisions --summary -A candice@candice.net--2003-
candice \
 hello-world--candice--0.1
 base-0
 tag of
 lord@emf.net--2003-example/hello-world--mainline--0.1--
patch-1
 patch-1
 Punctuated the output correctly
 patch-2
 merge from mainline sources
 patch-3
 added a period to output string
 patch-4
 capitalized the output string

 % tla revisions --summary -A lord@emf.net--2003-example \
 hello-world--mainline--0.1
 base-0
 initial import
 patch-1
 Fix bugs in the "hello world" string
 patch-2
 commented return from main
 patch-3
 added copywrong statements
 patch-4
 merge from Candice's Branch
 patch-5
 fixed the copyrwrong for hw.c
 patch-6
 fixed the copyrwrong for main.c

Let's consider a scenario in which our goal is to merge the new work on the mainline branch into the
candice branch. In other words, we want to wind up with:

 mainline--0.1 candice--0.1
 ------------- ------------
 base-0 -----------> base-0 (a tag)
 patch-1 ---------' patch-1
 patch-2 ----------> patch-2
 patch-3 ----------' --------' patch-3
 patch-4 <-----------' patch-4
 patch-5 --------> patch-5
 patch-6 ------------'

How can we perform that merge? Let's start with the latest pre-merge candice revision (patch-4):

 % tla get -A candice@candice.net--2003-candice \
 hello-world--candice--0.1--patch-4 \
 hw-C-4
 [....]

 % cd hw-C-4

Here are two techniques that don't work:

replay Does Not Solve the Development Branch Merge Problem

replay will try to apply all "missing" changes from the mainline into the candice tree. The list of
changeset it will apply is given by:

 % tla missing --summary \
 -A candice@candice.net--2003-example \
 hello-world--mainline--0.1
 patch-4
 merge from Candice's Branch
 patch-5
 fixed the copyrwrong for hw.c
 patch-6
 fixed the copyrwrong for main.c

Problematic in that list is patch-4 . It's a merge that includes all of the changes from the candice
branch up to its patch-2 level. Yet those changes are already present in the patch-4 revision of the
candice branch -- so replay will be applying them redundantly (cause patch conflicts).

Note of Warning: The replay command will not prevent you from running further replays even
though the source tree is not in a consistant state. TLA in its current incarnation does not merge reject
files. This leaves open the possibility that patch rejects will be lost if a second replay is performed
before the rejects from the first replay are resolved. (Some day TLA may be able to merge multiple
rejects into a combined reject.)

Advanced User Note: The replay command has options that would allows us to skip the patch-4
revision from the mainline. That sort of solves the problem, but it has some drawbacks. First, it means
that patch-4 will continue to appear in the missing output of the candice branch. Second, there is
nothing that guarantees us that the patch-4 changeset contains only merges from the candice
branch. If Alice and Bob made other changes in patch-4 , and we skip that changeset, those other
changes will be lost.

update Does Not Solve the Development Branch Merge Problem

Suppose we try to update from the mainline branch. Recall that update will compute a changeset
from the youngest mainline ancestor of the project tree to the tree itself, then apply that changeset to
the latest mainline revision.

We have a notation for this. A changeset from X to Y is written:

 delta(X, Y)

In this case, update will start by computing a changeset from the mainline patch-3 revision to
our project tree:

 delta(mainline--0.1--patch-3, hw-C-4)

The tree that results for applying a changeset from X to Y to a tree Z is written:

 delta(X, Y) [Z]

In other words, the result of update in our example can be described as:

 delta(mainline--0.1--patch-3, hw-C-4) [mainline--0.1--patch-6]

Here's the problem, though. The patch-3 revision of mainline was not previously merged with the
candice branch. Thus, the changeset

 delta(mainline--0.1--patch-3, hw-C-4)

will include, among other changes, the changes from patch-1 and patch-2 of the candice branch.

Unfortunately, the tree we'll be applying that changeset to, mainline--0.1--patch-6 , has
already been merged with base-0...patch-2 of the candice branch.

As with replay , update will cause merge conflicts by making zredundant changes.

Solving One Instance of the Development Branch Merging Problem

Using just our delta notation and merge diagrams, let's look at solving this merge problem cleanly.

Remember that we currently have:

 mainline--0.1 candice--0.1
 ------------- ------------
 base-0 -----------> base-0 (a tag)
 patch-1 ---------' patch-1
 patch-2 ----------> patch-2
 patch-3 ----------' --------' patch-3
 patch-4 <-----------' patch-4
 patch-5
 patch-6

and our goal is to create a new merge, for patch-5 of Candice's branch:

 --------> patch-5
 patch-6 ------------'

We might decide to start with a mainline branch and merge in missing candice changes, or start
with a candice tree and merge in missing mainline changes. Let's assume the latter (merging into a
candice tree).

In this case, mainline-0.1 revision patch-6 is "up to date" with candice-0.1 revision patch-
2 . We want too apply all changes since then to the latest candice revision:

 with:
 ancestor := candice--0.1--patch-2
 merge_in := mainline--0.1--patch-6
 target := canidice--0.1--patch-4

 answer := delta(ancestor, merge_in)[target]

The arrows in the merge diagram are critical to figuring out the right answer. For example, suppose that
the arrow from Candice's patch-2 to the mainline revision patch-4 wasn't there. Then the
answer would be:

 with:
 ancestor := mainline--0.1--patch-3
 merge_in := mainline--0.1--patch-6
 target := canidice--0.1--patch-4

 answer := delta(ancestor, merge_in)[target]

Tracing out the arrows for a given merge is a tedious process. It's automated by the star-merge
command:

star-merge -- Solving the Development Branch Merging Problem in General

It's a bit beyond the scope of this tutorial to explain the complete solution to the development branch
merging problem in general. The two solutions shown above illustrate two cases, but slightly different
solutions are sometimes necessary.

What you should know is that when you have simple development branches (see Simple Development
Branches), the command star-merge knows how to merge between them without causing spurious
merge conflicts.

In ordinary use, you invoke star-merge in the tree you want to merge info, providing as an argument
the tree you want to merge from:

 % tla get -A candice@candice.net--2003-candice \
 hello-world--candice--0.1--patch-4 \
 merge-temp

 % tla star-merge lord@emf.net--2003/hello-world--mainline--0.1

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Symbolic Tags

up: arch Meets hello-world
next: Cherrypicking Changes
prev: Development Branches -- The star-merge Style of Cooperation

As projects grow larger and more complicated, it is often useful to be able to give a symbolic name to
particular revisions within an arch version.

For example, let's suppose that the hello-world project has many revisions:

 mainline

 base-0
 patch-1
 patch-2

 patch-23

It may be that, as development proceeds, occasional "snapshot" releases are made from the mainline .
Not every revision becomes a snapshot, but some do.

It would be convenient to provide a label of which revisions became snapshots:

 mainline

 base-0
 patch-1 snapshot 0
 patch-2

 patch-12 snapshot 2

 patch-23 snapshot 3

http://www.regexps.com/

The tag command, introduced earlier, can be used for this purpose (see Making a Branch from a
Remote Project in a Local Archive).

When we first encountered tag , it was used just to create the base-0 revision of an elementary
branch. It can also be used to create a branch all of whose revisions are tags.

Let's suppose that we'll be creating a branch called hello-world--snapshots--0.1 .
Diagramatically, we'll have:

 mainline snapshots
 -------- ---------
 base-0 --------> base-0 (tag)
 patch-1 -------------' ------> patch-1 (tag)
 patch-2 '
 '
 patch-12 ------------'

 patch-23

To create the snapshot tag for patch-23 :

 % tla tag hello-world--mainline--0.1--patch-23 \
 hello-world--snapshots--0.1

after which we'll have:

 mainline snapshots
 -------- ---------
 base-0 --------> base-0 (tag)
 patch-1 -------------' ------> patch-1 (tag)
 patch-2 ' -----> patch-2 (tag)
 ' '
 patch-12 ------------' '

 '
 patch-23 ------------'

In effect, the snapshots branch is a kind of "symbolic name" with history. We can get the latest
revision named by that symbol with:

 % tla get hello-world--snapshots--0.1

and earlier revisions by naming specific revisions, e.g.:

 % tla get hello-world--snapshots--0.1--patch-1

Usage Caution: As a rule of thumb, your branches should be either commit based branches (all
revisions after base-0 are created by commit) or tag-based branches (all revisions are created by
tag). Commands such as replay , update , and star-merge are based on the presumption that
you stick to that rule. While it can be tempting, in obscure circumstances, to mix commit and tag on a
single branch -- it isn't generally recommended.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Cherrypicking Changes

up: arch Meets hello-world
next: Multi-tree Projects and Configuration Management
prev: Symbolic Tags

So far we've learned about elementary branches for maintaining changes apart from a primary
development branch and development branches for coordinating asynchronous work on a single project
(see Elementary Branches -- Maintaining Private Changes and Development Branches -- The star-merge
Style of Cooperation).

In this chapter, we'll briefly describe a third kind of branch that's useful when a project consists of
multiple "forks" -- multiple, equally primary branches.

Let's suppose, somewhat abstractly, that Alice and Bob's mainline has grown quite large:

 mainline

 base-0
 patch-1

 patch-23
 patch-24
 patch-25
 ...
 patch-42

At some point, perhaps because some controversy has emerged over choices made in the mainline , a
new developer, Derick, declares a fork and starts his own branch:

 mainline derick
 -------- ------
 base-0 ------> base-0
 patch-1 '

http://www.regexps.com/

 '
 patch-23 ----'
 patch-24
 patch-25
 ...
 patch-42

We already know that Derick can use update or replay to keep current with the mainline, but what
he doesn't want to? What if Derick wants the changes in patch-25 and patch-42 , but none of the
other post-patch-23 changes from the mainline ?

Derick can apply specific changes from the mainline by specifying the exact revision he wants, rather
than just specifying a version:

 % cd ~/wd

 % tla get hello-world--derick--0.1 derick

 % cd derick

 % tla replay -A lord@emf.net--2003-example \
 hello-world--mainline--0.1--patch-23

 % tla replay -A lord@emf.net--2003-example \
 hello-world--mainline--0.1--patch-42

 % tla missing -A lord@emf.net--2003-example \
 hello-world--mainline--0.1
 patch-24
 patch-25
 ...
 patch-41

 % tla logs -A lord@emf.net--2003-example \
 hello-world--mainline--0.1
 base-0
 patch-1
 ...

 patch-22
 patch-23
 patch-42

Cherrypicking changes in this manner isn't necessarily easy or even practical. It depends, for example,
on the mainline changes being "clean changesets" (see Using commit Well -- The Idea of a Clean
Changeset).

Nevertheless, for some projects, especially those characterized by lots of "forks", this technique can be
useful.

Learning Note: Multiple revisions may be replayed with a single command, simply by giving all of
them on the command line at once. The replay command also has a --list option which can useful
for cherrypicking many changes at once. If you find yourself replaying specific revisions often, you
should take a look at the --list option in tla replay --help .

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Multi-tree Projects and Configuration Management

up: arch Meets hello-world
next: Revision Library Basics
prev: Cherrypicking Changes

You can define meta-projects which are combinations of individual projects that are separately tracked
by arch . This allows you to divide a large project into smaller, more manageable pieces, each of which
can develop independently of the others, and each of which can be a part of more than one meta-project.

This is accomplished by writing config specs , which define the contents of the meta-project and how
they should be arranged in a source tree.

For example, arch itself is a meta-project. The source tree contains:

 dists/
 dists/src/
 dists/src/arch/
 dists/src/file-utils/
 dists/src/ftp-utils/
 dists/src/hackerlab/
 dists/src/shell-utils/

Each of those directories is the root of a project tree (contains a subdirectory named {arch}).

The topmost directory, dists also contains a subdirectory named configs . In that subdirectory are
the meta-project configuration files. For example:

 dists/
 dists/configs/
 dists/configs/regexps.com/ # Tom's configuration files
 dists/configs/regexps.com/devo.arch
 dists/configs/regexps.com/release-template.arch

Here are the contents of devo.arch :

 #

http://www.regexps.com/

 # Check out an arch distribution from the devo branches.
 # Latest revisions.
 #

 ./src lord@regexps.com--2002/package-
framework--devo
 ./src/arch lord@regexps.com--2002/arch--devo
 ./src/file-utils lord@regexps.com--2002/file-utils--devo
 ./src/ftp-utils lord@regexps.com--2002/ftp-utils--devo
 ./src/hackerlab lord@regexps.com--2002/hackerlab--devo
 ./src/shell-utils lord@regexps.com--2002/shell-utils--devo
 ./src/text-utils lord@regexps.com--2002/text-utils--devo

Each (non-blank, non-comment) line in that file has the format:

 LOCATION CONTENTS

which means, to create the meta-project, get the revision indicated by CONTENTS and install it at
LOCATION . The CONTENTS field can be a branch (meaning, get the latest revision of the latest version
on that branch), a version (meaning get the latest revision in that version), or a revision name (meaning
get that revision, exactly).

To check out an entire arch tree, I first check out dists from devo , then use build-config :

 % tla get dists--devo dists
 [....]

 % cd dists

 % tla build-config regexps.com/dists.devo
 [....]

Once you have a meta-project tree, some other useful commands are:

 cat-config : output information about a multi-project config

One use of that command is to generate a list of sub-projects to which some other command can be
iteratively applied:

 % tla cat-config CFGNAME | awk '{print $1}' | xargs ...

Additionally, the option --snap can be usefully applied to a configuration that names subproces by
version rather than revision. It examines the project tree to see what revisions are actually installed at
each of the LOCATIONs . Then it writes a new config which specify those REVISIONS precisely. This
is useful, for example, for recording the specific revisions you are about to turn into a distribution.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Revision Library Basics

up: arch Meets hello-world
next: Advanced Revision Library Use
prev: Multi-tree Projects and Configuration Management

For many purposes, it is useful to have a library containing pristine trees of a large number of revisions
-- for example, all of the revisions in a particular version. To be practical, though, such a library must be
represented in a space-efficient way.

Unix hard-links provide a natural way to store such a library. Each successive revision in a series is a
copy of the previous, but with unmodified files shared via hard-links.

arch provides commands to help you build, maintain, and browse such a library.

As a pleasant side effect, many arch commands are speeded up if the revisions they need to operate are
present in your revision library. You can read more about this in the next chapter.

Your Revision Library Locations

To begin a new revision library, first create a new directory (DIR) and then register its location:

 % tla my-revision-library DIR

You can check the location of your library with:

 % tla my-revision-library

or unregister it with:

 % tla my-revision-library -d DIR

Note that you can have more than one revision library: in effect you have a "path" listing all of your
library locations.

http://www.regexps.com/

Revision Library Format

A revision library has subdirectories of the form:

 ARCHIVE-NAME/CATEGORY/BRANCH/VERSION/REVISION/

Each REVISION directory contains the complete source of a particular revision, along with some
supplemantary subdirectories and files:

 REVISION/,,patch-set/

 The patch set that creates this revision from
 its ancestor (unless the revision is a full-source
 base revision).

Although the permissions on files in the revision library are determined as determined by patch sets, you
must never modify files int the revision library. Doing so will cause odd errors and failures in various
arch commands.

Adding a Revision to the Library By Hand

You can add a selected revision to your revision library with:

 % tla library-add REVISION

library-add will normally add not only REVISION to the library, but all directly preceeding
revisions (recursively) which are from the version as REVISION.

If you want to add only REVISION and no others, use the --sparse option:

 % tla library-add --sparse REVISION

Finding a Revision in the Library

You can find a particular revision in the library with library-find :

 % tla library-find REVISION
 PATH-TO-REVSION

The output is an absolute path name to the library directory containing the revision. (Once again, you
must not modify files in that directory.)

Removing a Revision from the Library

To remove a particular revision from the library, use:

 % tla library-remove REVISION

Be aware of the following limitation in the current release: suppose that you add three successive
revisions, A , B , and C . Then you remove B , then re-add B . Now there is a chance that the file sharing
between B and C will be less than optimal, causing your library to be larger than it needs to be. (You can
fix this by then removing and re-adding C .)

Listing Library Contents

The command library-archives lists all archives with records in the library:

 % tla library-archives
 ARCHIVE-NAME
 ARCHIVE-NAME
 ...

Similarly, you can list categories, branches, versions, or revisions:

 % tla library-categories [ARCHIVE]
 % tla library-branches [ARCHIVE/CATEGORY]
 % tla library-versions [ARCHIVE/BRANCH]
 % tla library-revisions [ARCHIVE/VERSION]

Individual Files in the Revision Library

You can locate an individual file in a revision library with:

 % tla library-file FILE [REVISION]
 PATH

or obtain its contents with:

 % tla cat-library-file FILE [REVISION]
 ...file contents...

Both commands accept the options --id and --this . With --id , the argument FILE is interpreted
as an inventory id, and the file with that id is found.

With --this , FILE is interpreted as a file relative to the current directory, which should be part of a
project tree. The file's inventory id is computed and the corresponding file found in REVISION .

Determining Patch Set Prerequisits

 % tla touched-files-prereqs REVISION

That command looks at the patch set for REVISION and at all preceding patch sets in the same version
(it searches your library rather than your repository for this purpose). It reports the list of patches that
touch overlapping sets of files and directories -- in other words, it tells you what patches can be applied
independently of others. The command has an option to exclude from consideration file names matching
a certain pattern (e.g. =README or ChangeLog). It has an option to exclude from the output list
patches which have already been applied to a given project tree. It has an option to report the specific
files which are overlapped.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Advanced Revision Library Use

up: arch Meets hello-world
next: Driving Process Automation with arch Hooks
prev: Revision Library Basics

By default, when you get a revision from an archive, arch stores a "pristine copy" of that revision under
the {arch} directory.

Also by default, when get a revison, arch builds the revision by searching for the import ancestor or
the nearest archive-cached ancestor -- then applying later patches to construct the revision you want.

get and similar operations can be made both faster and more space efficient by using revision libraries.
For example, if get finds the revision you asked for in a library, it will copy it directly from there
(rather than building it by patching) and skip building a pristine copy under {arch} .

That's all well and good -- but it can be awkward to have to remember to library-add revisions to
your library. This section will show how you can automate the process.

Greedy Revision Libraries

A greedy revision library has the property that whenever arch looks to see if the library contains a
particular revision, if the library _doesn't_ contain that revision, arch will add it automatically.

You can make a particular revision library directory greedy with the command:

 % tla library-config --greedy DIR

Sparse Revision Libraries

When arch automatically adds a revision to a greedy library, normally it does it in the default manner of
library-add : it adds previous revisions in the same version as well.

If you were adding a revision to a library by-hand you could avoid that behavior with the --sparse
option to library-add . To obtain that behavior for automatically added revisions, use:

 % tla library-config --sparse DIR

http://www.regexps.com/

which means that if a revision is automatically added to the library located at DIR, it is added as if the --
sparse option to library-add were being used.

Hard Linked Project Trees

Warning: To save yourself some confusion, do not use the following feature unless you understand (a)
what a hard-link is and (b) what it means for an editor to "break hard links when writing a file". If you
understand those terms, and know that the editor you use does in fact break hard links, then feel free to
use this feature.

You can very rapidly get a revision from a revision library not by copying it, but instead by making
hard-links to it:

 % tla get --link REVISION

The build-config command has a similar option:

 % tla build-config --link REVISION

This can save considerable disk space and greatly speed up the get operation.

(There is, of course, a small chance that when you use a hard-linked tree something will go wrong and
modify the files in the revision library. Arch will notice that if it happens and give you an error message
advising you to delete and reconstruct the problematic revision in the library.)

Putting it All Together

To sum up, a very handy and efficient set up involves:

1) Create one or more revision library directories.

2) Make at least some of those libraries greedy and possibly sparse.

3) Use the --link option to get and build-config .

When you work this way, and arch needs to automatically add a revision to a library for you, it will
search for a library on the appropriate device (for hard-links purposes). Among those it will search first
for a library that already contains the same version as the revision you want and, failing that, for a

greedy library.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Driving Process Automation with arch Hooks

up: arch Meets hello-world
next: Speeding up arch by Caching Revisions in Archives
prev: Advanced Revision Library Use

In some circumstances, it is very useful to trigger actions upon the detection of changes to an archive.
For example, you might want to send an email notification whenever new revisions are checked in.

This process occurs through arch by use of hooks. Each time that arch performs a command that
modifies an archive, arch will attempt to run ~/.arch-params/hook, which must be set as executable.

Aguments given to the hook $1 : action performed (e.g. commit)

Environment Variables

Arguments Given to hook

Whenever arch performs a command that affects an archive, arch will run hook with the first argument
set as the action performed. If I user runs a command (such as make-archive) then hook will be called
multiple times with multiple arguments (such as make-archive, make-category, make branch and make-
version)

The arguments that may be seen are:

import, commit, tag, make-archive, make-category, make-branch and make-version.

Environment Variables Passed to hook

Tla also passes certain variables to the hook when appropriate. Variables passed by Tla are prefaced
with ARCH_. Variables that may be passed include:

Name : ARCH_ARCHIVE Description : The archive involved in the action Seen : all actions Example :
lord@emf.net--2003-example

Name : ARCH_CATEGORY Description : Name of category created Seen : make-category Example :
hello-world

http://www.regexps.com/

Name : ARCH_BRANCH Description : Name of branch being created Seen : make-branch Example :
mainline

Name : ARCH_VERSION Description : Name of version being created Seen : make-version Example :
0 .1

Name : ARCH_REVISION Descriptoin : Name of revision involved Seen : import, tag, commit
Example : patch-6

Name : ARCH_LOCATION Description : Location of archive being created Seen : make-archive
Example : /usr/lord/archives /2003-example

Name : ARCH_TREE_ROOT Description : Seen : commit, import Example : /home/lord/wd

Name : ARCH_TAGGED_ARCHIVE Description : Seen : tag Example :

Name : ARCH_TAGGED_REVISION Description : Seen : Example :

An Example of Using hook

 #!/bin/sh

 if ["$1" == "commit"]; then
 tla push-mirror lord@emf.net--2003-example \
 lord@emf.net--2003-example-MIRROR;
 fi

A more complex Examples of Using hook

 #!/bin/sh

 case "$1" in
 commit)
 case "$ARCH_CATEGORY" in
 hello-world)
 case "$ARCH_BRANCH" in
 mainline)
 RELEASETYPE="stable"

 ;;
 devel)
 RELEASETYPE="unstable"
 ;;
 *)

 echo "The $RELEASETYPE version of Hello, World been
upgraded. \
 New versions are available at ftp.hello.com" |\
 mailto hello-users@hello.com -s "Hello upgraded"
 ;;
 goodbye-world)
 case "$ARCH_BRANCH" in
 mainline)
 RELEASETYPE="stable"
 ;;
 devel)
 RELEASETYPE="unstable"
 ;;
 RELEASETYPE="[unknown]"
 *)
 esac;
 echo "The stable version of Goodbye, Cruel World
been upgraded. \
 New versions are available at ftp.hello.com" |\
 mailto hello-users@hello.com -s "Hello upgraded"
 ;;
 esac
 ;;
 esac

Robustness Issues with hook

Unfortunately, some fundamental physical properties of the universe make it impossible for arch to
guarantee that hook will be invoked only once for each new category, branch, version, or revision. A
(presumably rare) well timed interrupt or system failure can cause notify to invoke actions more than
once for a given change to the archive.

Consequently, actions should be designed to be robust against that eventuality.

Additionally, if arch has been run concurrantly, then the hook may run concurrantly as well. This means
that projects using hook should take care that hook is capable of running with simultaneous copies.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Speeding up arch by Caching Revisions in Archives

up: arch Meets hello-world
next: The arch Changeset Format
prev: Driving Process Automation with arch Hooks

This chapter will teach you one technique for speeding up access to an arch archive.

Consider an arch version that contains many revisions:

 mainline

 base-0
 patch-1

 patch-23
 patch-24
 patch-25
 ...
 patch-42

Suppose that a user (with no local pristine cache) wants to get the patch-42 revision. get proceeds
by first getting and unpacking the base-0 revision, then getting each patch-<N> changeset, in order,
and applying those to the tree.

If the list of changesets that need to be applied is long, or the sum of their sizes large in comparison to
the tree side, then this implementation of get is needlessly inefficient.

One way to speed up get is by archive caching revisions -- storing "pre-built" copies of some revisions
with the archive.

For example, the command:

 % tla cacherev -A lord@emf.net--2003-example \

http://www.regexps.com/

 hello-world--mainline--0.1--patch-40

will build the patch-40 revision, package it up as a tar bundle, and store a copy of that tar bundle in
the patch-40 directory of the archive.

Subsequently, a get of patch-42 will work by first fetching the cached copy of the patch-40
revision, then getting and applying the changesets for patch-41 and patch-42 : a savings of 40
changesets.

Usage Note: At this time, it's left up to you to decide which revisions to cache and which not. You
might decide, for example, to automatically cache certain revisions from a cron job or to simply cache
revisions by-hand whenever you notice that get is too slow. In the future, we hope to add better support
for automatically caching revisions.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

The arch Changeset Format

up: arch Meets hello-world
next: Customizing the inventory Naming Conventions
prev: Speeding up arch by Caching Revisions in Archives

An arch changeset is a directory containing a number of files and subdirectories. Each is described
below.

Files:

 orig-dirs-index
 mod-dirs-index
 orig-files-index
 mod-files-index

Format:

 <file path><tab><id>

Sorting:

 sort -k 2

These contain indexes for all files and directories added, removed, or modified between the two trees.

Files:

 original-only-dir-metadata
 modified-only-dir-metadata

Format:

 <metadata><tab><name>

http://www.regexps.com/

Sorting:

 sort -t '<tab>' -k 2

The field <metadata> contains literal output from the program file-metadata given the options
--permissions . Some example output is:

 --permissions 777

That output is also suitable for use as options and option arguments to the program set-file-
metadata . Future releases arch might add additional flags (beside just permissions).

The list records the file permissions for all directories present in only one of the two trees.

Directories:

 removed-files-archive
 new-files-archive

Each of these directories contains complete copies of all files that occur in only the original tree
(removed-files-archive) or modified tree (new-files-archive). Each saved file is
archived at the same relative location it had in its source tree, with permissions (at least) preserved.

Directory:

 patches

This directory contains a tree whose directory structure is a subset of the directory structure of the
modified tree. It contains modification data for directories and files common to both trees.

For a file stored in the modified tree at the path new_name , the patches directory may contain:

 new_name.link-orig

 The original file is a symbolic link.

 `new_name.link-orig' is a text file containing the
 target of that link plus a final newline.

 This file is only present if link target has changed,
 or if the link was replaced by a regular file.

 new_name.link-mod

 The modified file is a symbolic link and this file
 is a text file containing the target for the link plus
 a final newline.

 This file is only present if the link target has
 changed, or if the link replaces a regular file.

 new_name.original

 This is a complete copy of the file from the original
 tree, preserving (at least) permissions.

 This file is only present if the file was replaced by
 a symbolic link, or if the file contents can not be
 handled by `diff(1)'.

 new_name.modified

 This is a complete copy of the file from the modified
 tree, preserving (at least) permissions.

 This file is only present if the file replaces a
 symbolic link, or if the file contents can not be
 handled by `diff(1)'.

 new_name.patch

 This is a standard context diff between the original
 file and modified file. One popular version of diff
 (`GNU diff') generates non-standard context diffs by
 omitting one copy of lines of context that are
 identical between the original and modified file, so

 for now, `.patch' files may have the same bug.
 Fortunately, the only popular version of `patch'
 (``GNU patch'') is tolerant of receiving such input.

 new_name.meta-orig
 new_name.meta-mod

 File metadata (currently only permissions) changed
 between the two versions of the file. These files
 contain output from the `file-metadata' program with
 the flags `--symlink --permissions', suitable for
 comparison to similar output, and for use as options
 and option arguments to `set-file-metadata'.

 These files are also included if a regular file has
 replaced a symbolic link or vice versa.

 new_name/=dir-meta-orig
 new_name/=dir-meta-mod

 Directory metadata (currently only permissions)
changed
 between the two versions of the directory containing
 these files. These files contain output from the
 `file-metadata' program with the flags `--symlink
 --permissions', suitable for comparison to similar
 output, and for use as options and option arguments to
 `set-file-metadata'.

Note: If a regular file (or symbolic link) replaces a directory, or vice versa, this is recorded as a file (or
link) removed (or added) in one tree and added (or removed) in the other.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Customizing the inventory Naming Conventions

up: arch Meets hello-world
next: The GNU General Public License
prev: The arch Changeset Format

In Project Tree Inventories, you learned how the tla inventory command classifies files within a
project tree using a set of naming conventions. This appendix explains how you can customize those
naming conventions.

When to Customize Naming Conventions

It's best to make customizations to the naming conventions of a project at the outset: before you
import your first revision.

If you must make changes later, then it's essential that your changes do not change the classification of
files already in the latest revision(s) of your project at the time you make the change (otherwise, you are
likely to experience perplexing and undesirable behavior).

How to Customize Naming Conventions

You should begin by reviewing the naming convention algorithm in The arch Naming Conventions. You
can modify that algorithm by changing the regular expression used for each category test.

You can customize naming conventions by modifying the file ./{arch}/=tagging-method in
your project trees. That file is created by the id-tagging-method command and initially, it contains
a single line which names the id tagging method (names , explicit , tagline (or the now
deprecated, but popular in some older projects, including arch itself, implicit)).

In particular, =tagging-method can contain blank lines and comments (lines beginning with #) and
directives, one per line. The permissible directives are:

 tagline
 implicit
 explicit
 names
 specify the id tagging method to use for this tree

http://www.regexps.com/

 exclude RE
 junk RE
 backup RE
 precious RE
 unrecognized RE
 source RE
 specify a regular expression to use for the indicated
 category of files.

Regular expressions are specified in Posix ERE syntax (the same syntax used by egrep , grep -E , and
awk) and have default values which implement the naming conventions described in The arch Naming
Conventions.

A given regexp directive can occur more than once, in which case the regexps are concatenated as
alternatives. Thus, for example:

 source .*\.c$
 source .*\.h$

is equivalent to:

 source (.*\.c$)|(.*\.h$)

Per-Directory Regexps

A source directory can contain a .arch-inventory file.

.arch-inventory files can contain regexp declarations just like those in =tagging-method (i.e., one
for excludes , one for junk , etc.) Let's call these the dir-local regexps . The =tagging-method
regexps are the global regexps .

While traversing a tree, each file is classified-by-name as follows. the steps which are changed by .
arch-inventory are marked with [*] :

 0) "." and ".." remain excluded files, no matter what.

 [*] 1) if excluded files are being omitted from the inventory,

 and either the dir-local or global regexp, the file
 is excluded

 2) if the file is a control file, it is source

 3) if the file falls into one of the "mandatory categories"
 (",," and "++" files) it is categorized as junk or
 precious respectively.

 [*] 4) the dir-local (only) regexps are tried in the usual order:
 junk, backup, precious, unrecognized, source. If the file
 matches, it is suitably categorized.

 5) the global regexps are tried in the same order.

 6) otherwise the file is unrecognized.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

The GNU General Public License

up: arch Meets hello-world
next: Uh....a Little Help Here?
prev: Customizing the inventory Naming Conventions

arch is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License (GPL) as published by the Free Software Foundation (and reproduced below).

This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License (reproduced below) for more details.

I have chosen to use the GPL for this software because I believe it best reflects the duties to society of a
software engineer. It is the best license for users, for my fellow engineers, and for society as a whole. As
is beginning to be widely appreciated, this license is a startling profound and influential document and is
worthy of study in its own right.

In a commercial climate that grew up mostly under proprietary licenses (those that fall far short of
protecting the freedoms and promoting the obligations of the GPL), my choice of this license has, at the
moment, made it difficult for me to recover the costs of developing arch and to make a profit from my
work going forward. Those are very serious problems, in my opinion. Please see also Uh....a Little Help
Here?.

 GNU GENERAL PUBLIC LICENSE
 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.
 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

http://www.regexps.com/

This General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit
to using it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and
charge for this service if you wish), that you receive source code
or can get it if you want it, that you can change the software or
use pieces of it in new free programs; and that you know you can do
these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the
rights. These restrictions translate to certain responsibilities
for you if you distribute copies of the software, or if you modify
it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights
that you have. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they
know their rights.

 We protect your rights with two steps: (1) copyright the software,
and (2) offer you this license which gives you legal permission to
copy, distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make
certain that everyone understands that there is no warranty for this
free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not
the original, so that any problems introduced by others will not
reflect on the original authors' reputations.

 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making
the program proprietary. To prevent this, we have made it clear
that any patent must be licensed for everyone's free use or not
licensed at all.

 The precise terms and conditions for copying, distribution and
modification follow.

 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which
contains a notice placed by the copyright holder saying it may be
distributed under the terms of this General Public License. The
"Program", below, refers to any such program or work, and a "work
based on the Program" means either the Program or any derivative
work under copyright law: that is to say, a work containing the
Program or a portion of it, either verbatim or with modifications
and/or translated into another language. (Hereinafter, translation
is included without limitation in the term "modification".) Each
licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on
the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of
this License along with the Program.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for
a fee.

 2. You may modify your copy or copies of the Program or any
portion of it, thus forming a work based on the Program, and copy
and distribute such modifications or work under the terms of Section
1 above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices

 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that
 in whole or in part contains or is derived from the Program or
 any part thereof, to be licensed as a whole at no charge to all
 third parties under the terms of this License.

 c) If the modified program normally reads commands interactively
 when run, you must cause it, when started running for such
 interactive use in the most ordinary way, to print or display an
 announcement including an appropriate copyright notice and a
 notice that there is no warranty (or else, saying that you
 provide a warranty) and that users may redistribute the program
 under these conditions, and telling the user how to view a copy
 of this License. (Exception: if the Program itself is
 interactive but does not normally print such an announcement,
 your work based on the Program is not required to print an
 announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work
based on the Program, the distribution of the whole must be on the
terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of
who wrote it.

Thus, it is not the intent of this section to claim rights or
contest your rights to work written entirely by you; rather, the
intent is to exercise the right to control the distribution of
derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the
Program with the Program (or with a work based on the Program) on a
volume of a storage or distribution medium does not bring the other
work under the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms
of Sections 1 and 2 above provided that you also do one of the

following:

 a) Accompany it with the complete corresponding machine-readable
 source code, which must be distributed under the terms of
 Sections 1 and 2 above on a medium customarily used for software
 interchange; or,

 b) Accompany it with a written offer, valid for at least three
 years, to give any third party, for a charge no more than your
 cost of physically performing source distribution, a complete
 machine-readable copy of the corresponding source code, to be
 distributed under the terms of Sections 1 and 2 above on a
 medium customarily used for software interchange; or,

 c) Accompany it with the information you received as to the
 offer to distribute corresponding source code. (This
 alternative is allowed only for noncommercial distribution and
 only if you received the program in object code or executable
 form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as
a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

 4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from
you under this License will not have their licenses terminated so

long as such parties remain in full compliance.

 5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on
the Program), the recipient automatically receives a license from
the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any
further restrictions on the recipients' exercise of the rights
granted herein. You are not responsible for enforcing compliance by
third parties to this License.

 7. If, as a consequence of a court judgment or allegation of
patent infringement or for any other reason (not limited to patent
issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Program at all.
For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could
satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable
under any particular circumstance, the balance of the section is
intended to apply and the section as a whole is intended to apply in
other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed
to be a consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces,
the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in
or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this
License.

 9. The Free Software Foundation may publish revised and/or new
versions of the General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies a version number of this License which applies to
it and "any later version", you have the option of following the
terms and conditions either of that version or of any later version
published by the Free Software Foundation. If the Program does not
specify a version number of this License, you may choose any version
ever published by the Free Software Foundation.

 10. If you wish to incorporate parts of the Program into other
free programs whose distribution conditions are different, write to
the author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and
reuse of software generally.

 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the
greatest possible use to the public, the best way to achieve this is
to make it free software which everyone can redistribute and change
under these terms.

 To do so, attach the following notices to the program. It is
safest to attach them to the start of each source file to most
effectively convey the exclusion of warranty; and each file should
have at least the "copyright" line and a pointer to where the full
notice is found.

 <one line to give the program's name and a brief idea of what it
 does.>
 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or
 modify it under the terms of the GNU General Public License as
 published by the Free Software Foundation; either version 2 of

 the License, or (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public
 License along with this program; if not, write to the Free
 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 MA 02111-1307 USA

Also add information on how to contact you by electronic and paper
mail.

If the program is interactive, make it output a short notice like
this when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type
 `show w'. This is free software, and you are welcome to
 redistribute it under certain conditions; type `show c' for
 details.

The hypothetical commands `show w' and `show c' should show the
appropriate parts of the General Public License. Of course, the
commands you use may be called something other than `show w' and
`show c'; they could even be mouse-clicks or menu items--whatever
suits your program.

You should also get your employer (if you work as a programmer) or
your school, if any, to sign a "copyright disclaimer" for the
program, if necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the
 program `Gnomovision' (which makes passes at compilers) written by
 James Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your

program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking
proprietary applications with the library. If this is what you want
to do, use the GNU Library General Public License instead of this
License.

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/

The Hackerlab at regexps.com

Uh....a Little Help Here?

up: arch Meets hello-world
next: Indexes
prev: The GNU General Public License

arch is a Community Supported Free Software Project -- I rely on the financial support of the
community to be able to develop arch and the other free software projects that I work on.

If you are able to help out, even just a little, please do so. I'm able to accept contributions as
lord@emf.net on Paypal. Arrangements can be made to accept contributions larger than a few 10s of
dollars as a tax-deductible contribution to a non-profit organization (contact me if you would like to do
this.)

Finally, if you represent a business or non-profit organization, I offer a Release Subscription Service -- a
formally invoiced mechanism, suitable for corporate purchasing practices, for contributing and gaining
recognition in my eyes as a true customer for my development work. (Again, please contact me if this is
of interest to you.)

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/
http://www.regexps.com/

The Hackerlab at regexps.com

Indexes

up: arch Meets hello-world
prev: Uh....a Little Help Here?

arch Meets hello-world: A Tutorial Introduction to The arch Revision Control System
The Hackerlab at regexps.com

http://www.regexps.com/
http://www.regexps.com/

	Local Disk
	arch Meets hello-world
	Introducing arch
	System Requirements
	arch Commands in General
	Introducing Yourself to arch
	Creating a New Archive
	Starting a New Project
	Starting a New Source Tree
	Project Tree Inventories
	Inventory Ids for Source
	Importing the First Revision
	Checking-in Changes
	Retrieving Earlier Revisions
	Shared and Public Archives
	The update/commit Style of Cooperation
	Introducing Changesets
	Exploring Changesets
	Introducing replay -- An Alternative to update
	Selected Files Commit
	Elementary Branches -- Maintaining Private Changes
	Patch Logs and Project Tree History
	Development Branches -- The star-merge Style of Cooperation
	Symbolic Tags
	Cherrypicking Changes
	Multi-tree Projects and Configuration Management
	Revision Library Basics
	Advanced Revision Library Use
	Driving Process Automation with arch Hooks
	Speeding up arch by Caching Revisions in Archives
	The arch Changeset Format
	Customizing the inventory Naming Conventions
	The GNU General Public License
	Uh....a Little Help Here?
	Indexes

